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Thesis statement

Explicit programmer-specified constraints on execution order
and visibility of writes are a practical approach for low-level
concurrent programming in the presence of modern hardware
and optimizing compilers.
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Low-level concurrent programming?

Explicit programmer-specified constraints on execution order
and visibility of writes are a practical approach for low-level
concurrent programming in the presence of modern hardware
and optimizing compilers.
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I Imperative shared-memory concurrency

I Without locks around all shared data

I “Lock-free algorithms”

I Hard, even under the the best of circumstances

I To be avoided, except when you can’t (perf-critical code,
implementation of system libraries, ...)
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“The best of circumstances”

I Sequential consistency (SC)

I Threads interleave instructions

I Modifying a single shared memory
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Example

int data, flag = 0;

void send(int msg) {

data = msg;

flag = 1;

}

int recv() {

while (!flag)

continue;

return data;

}

I Two threads: one wants to send a single message to the other

I Correctness: recv() only returns the value passed to send()

I If the read from flag returns 1, the read from data must
return the sent value

7



Example

int data, flag = 0;

void send(int msg) {

data = msg;

flag = 1;

}

int recv() {

while (!flag)

continue;

return data;

}

I Two threads: one wants to send a single message to the other

I Correctness: recv() only returns the value passed to send()

I If the read from flag returns 1, the read from data must
return the sent value

7



Modernity

Explicit programmer-specified constraints on execution order
and visibility of writes are a practical approach for low-level
concurrent programming in the presence of modern hardware
and optimizing compilers.
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Modernity
CPU trouble

I No major processor promises SC

I Out-of-order and speculative execution

I Write buffers, caches

I Expensive to maintain SC while having these
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Modernity
CPU trouble

I Since most code isn’t sharing memory, architectures provide a
weaker model

I And explicit fence instructions for when you do share memory
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Modernity
CPU trouble

I Can’t view the weak behavior as simply reordering
instructions!

I Writes can become visible to CPUs in different orders

I Execution order on the CPU and visibility order inside the
memory system are separate phenomena
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Modernity
It’s not just the CPU

int data, flag = 0;

void send(int msg) {

data = msg;

flag = 1;

}

int recv() {

while (!flag)

continue;

return data;

}

Compiler might...
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It’s not just the CPU

int data, flag = 0;

void send(int msg) {

data = msg;

flag = 1;

}

int recv() {

while (!flag)

continue;

return data;

}

Compiler might... hoist the load from flag

int data, flag = 0;

void send(int msg) {

data = msg;

flag = 1;

}

int recv() {

if (!flag) {

while (1) continue;

}

return data;

}
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Modernity
It’s not just the CPU

int data, flag = 0;

void send(int msg) {

data = msg;

flag = 1;

}

int recv() {

while (!flag)

continue;

return data;

}

Compiler might... reorder the reads in recv()

int data, flag = 0;

void send(int msg) {

data = msg;

flag = 1;

}

int recv() {

int rd = data;

while (!flag)

continue;

return rd;

}
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Modernity
Compiler trouble

I The loop hoisting is likely

I The reorderings are possible; similar reorderings are more likely

I SC can be violated by: common sub-expression elimination,
loop hoisting, some forms of dead code elimination, ...

I Optimizations sound for single-threaded code
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Modernity

Explicit programmer-specified constraints on execution order
and visibility of writes are a practical approach for low-level
concurrent programming in the presence of modern hardware
and optimizing compilers.
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Approaches

I “Threads Cannot be Implemented as a Library”

I This is a language design issue

I Language must define semantics for concurrent programs
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Approaches
Starting point

I Provide mutexes that can be used to prevent data races

I (Data race: two threads accessing the same location “at
the same time”, at least one while writing)

I Promise sequential consistency if no data races

I Most single-threaded optimizations permitted
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Approaches
From there?

I And if there are data races?

I Java: very weak semantics
I C++: no semantics (“undefined behavior”)

I What to offer for “low-level” concurrency?

I Wide open design space!
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Approaches
Sequentially consistent atomics

I Add locations that may be accessed concurrently
I Java: volatile int flag;

I C++: std::atomic<int> flag;

I “Don’t count” towards data races

I Can use these concurrently without losing SC

I Really nice model! But expensive, and strong...
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Approaches
C++11 low-level atomics

High-level

Locks

Mid-level

SC atomics

Low-level

release, acquire

Very low-level

consume,
relaxed, fences

I Want better performance, will accept weaker semantics

I Mark accesses to atomic locations with “memory orders”:
seq cst, release, acquire, rel acq

I And consume and relaxed...

I And memory fences, with memory orders
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Approaches
C++11 low-level atomics

I Relations like “synchronizes with” and “happens before” are
inferred from these

I “Happens before” isn’t transitive

I “Sequentially consistent” fences can’t restore sequential
consistency

I We think we can do better
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Where RMC fits

C++:

High-level

Locks

Mid-level

SC atomics

Low-level

release, acquire

Very low-level

consume,
relaxed, fences

RMC:

High-level

Locks

Mid-level

SC atomics

Low-level

Ordering constraints

I Some subtlety in integrating SC and weaker

I But our main focus is on the low-level
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Constraints

Explicit programmer-specified constraints on execution order
and visibility of writes are a practical approach for low-level
concurrent programming in the presence of modern hardware
and optimizing compilers.
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Constraints

int data, flag = 0;

void send(int msg) {

data = msg;

flag = 1;

}

int recv() {

while (!flag)

continue;

return data;

}

I What do we need for this code to work?

I flag can be accessed concurrently

I If the write to flag is visible to other threads, the write to
data must be also (vo = visibility order)

I The read from flag must execute before the read from
data (xo = execution order)

I The combination ensures that the write to data is visible
to the read
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Constraints

W[data]=msg R[flag]=1

W[flag]=1 R[data]=?

vo xorf

I The combination ensures that the write to data is visible
to the read

I The read must read from it (or a later write)

I (rf = reads from)
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Constraints

W[data]=msg R[flag]=1

W[flag]=1 R[data]=msg

vo xorf

rf

I The combination ensures that the write to data is visible
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RMC

Explicit programmer-specified constraints on execution order
and visibility of writes are a practical approach for low-level
concurrent programming in the presence of modern hardware
and optimizing compilers.
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RMC
Concrete syntax

int data;

rmc::atomic<int> flag = 0;

void send(int msg) {

VEDGE(wdata, wflag);

L(wdata, data = msg);

L(wflag, flag = 1);

}

int recv() {

XEDGE(rflag, rdata);

while (!L(rflag, flag))

continue;

return L(rdata, data);

}

I L(label, expr) labels an expression

I VEDGE and XEDGE establish visibility and execution edges

I rmc::atomic<int> flag declares a variable that can be
accessed concurrently
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Ring buffer

typedef struct {

unsigned char buf[SZ];

rmc::atomic<unsigned> front, back;

} ring_buf_t;

I Example adapted from the Linux Kernel

I Lock-free fixed size FIFO buffer

I One producer, one consumer

I Producer increments back, consumer increments front.

I Empty when back - front == 0, full when
back - front == SZ.
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void buf_enqueue(ring_buf *buf, unsigned char c) {

unsigned back = buf->back;

if (back != SZ + buf->front) { // not full

buf->buf[back % SZ] = c;

buf->back = back + 1;

}

}

int buf_dequeue(ring_buf *buf) {

int c = -1;

unsigned front = buf->front;

if (front != buf->back) { // not empty

c = buf->buf[front % SZ];

buf->front = front + 1;

}

return c;

}

I Message passing: values enqueued will be visible to dequeuer

I Ensure the value is read before its space is marked as free

I Don’t write a value until we know its space is free

28



void buf_enqueue(ring_buf *buf, unsigned char c) {

unsigned back = buf->back;

if (back != SZ + buf->front) { // not full

buf->buf[back % SZ] = c;

buf->back = back + 1;

}

}

int buf_dequeue(ring_buf *buf) {

int c = -1;

unsigned front = buf->front;

if (front != buf->back) { // not empty

c = buf->buf[front % SZ];

buf->front = front + 1;

}

return c;

}

I Message passing: values enqueued will be visible to dequeuer

I Ensure the value is read before its space is marked as free

I Don’t write a value until we know its space is free

28



void buf_enqueue(ring_buf *buf, unsigned char c) {

unsigned back = buf->back;

if (back != SZ + buf->front) { // not full

buf->buf[back % SZ] = c;

buf->back = back + 1;

}

}

int buf_dequeue(ring_buf *buf) {

int c = -1;

unsigned front = buf->front;

if (front != buf->back) { // not empty

c = buf->buf[front % SZ];

buf->front = front + 1;

}

return c;

}

I Message passing: values enqueued will be visible to dequeuer

I Ensure the value is read before its space is marked as free

I Don’t write a value until we know its space is free

28



void buf_enqueue(ring_buf *buf, unsigned char c) {

unsigned back = buf->back;

if (back != SZ + buf->front) { // not full

buf->buf[back % SZ] = c;

buf->back = back + 1;

}

}

int buf_dequeue(ring_buf *buf) {

int c = -1;

unsigned front = buf->front;

if (front != buf->back) { // not empty

c = buf->buf[front % SZ];

buf->front = front + 1;

}

return c;

}

I Message passing: values enqueued will be visible to dequeuer

I Ensure the value is read before its space is marked as free

I Don’t write a value until we know its space is free

28



void buf_enqueue(ring_buf *buf, unsigned char c) {

unsigned back = buf->back;

if (back != SZ + buf->front) { // not full

buf->buf[back % SZ] = c;

buf->back = back + 1;

}

}

int buf_dequeue(ring_buf *buf) {

int c = -1;

unsigned front = buf->front;

if (front != buf->back) { // not empty

c = buf->buf[front % SZ];

buf->front = front + 1;

}

return c;

}

I Message passing: values enqueued will be visible to dequeuer

I Ensure the value is read before its space is marked as free

I Don’t write a value until we know its space is free

28



void buf_enqueue(ring_buf *buf, unsigned char c) {

XEDGE(echeck, insert);

VEDGE(insert, eupdate);

unsigned back = buf->back;

if (back != SZ + L(echeck, buf->front)) {

L(insert, buf->buf[back % SZ] = c);

L(eupdate, buf->back = back + 1);

}

}
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Pushes
Rationale

I Consider the following (broken!) code, which could be a
snippet from a mutual exclusion algorithm

lock1 = 1;

if (!lock2) {

// Critical section

}

lock2 = 1;

if (!lock1) {

// Critical section

}

I Could let both threads into critical section

I Can’t fix this with visibility or execution edges

I Need write to become globally visible before read
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Pushes

I Pushes are globally visible actions–visible before
everything that executes after them

I Visibility between pushes is thus a total order

I Doesn’t do much on its own; combined with execution
and visibility edges to constrain behavior

I Architecturally, a full fence. Stalls execution until things
are visible
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Pushes
Using pushes

W[lock1] = 1 W[lock2]=1

push push

R[lock2]=? R[lock1]=?

vo

xo

vo

xo

I Push is visibility after the write, execution before the read

I One of the pushes needs to be visible to the other

I Which makes the write visible to the other thread’s read
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Pushes
Push syntax

VEDGE(write, flush);

XEDGE(flush, read);

L(write, lock1 = 1);

L(flush, rmc::push());

if (!L(read, lock2)) {

// Critical section

}
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Pushes
Push syntax - push edges

PEDGE(write, read);

L(write, lock1 = 1);

if (!L(read, lock2)) {

// Critical section

}
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That’s the heart of it

I Two core concepts: execution and visibility order

I Pushes, which are defined in terms of them

I More to talk about, but all about how to specify constraints!
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Advanced constraint specification
Spinlocks

void spinlock_lock(spinlock_t *lock) {

while (test_and_set(&lock->locked) == 1)

continue;

}

void spinlock_unlock(spinlock_t *lock) {

lock->locked = 0;

}

I What constraints do we need to use these in a program?

I The body of the critical section must execute after
spinlock_lock and before spinlock_unlock

I And visible before spinlock_unlock

I Only allowing constraints from label-to-label is
cumbersome and anti-modular
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Advanced constraint specification
Pre and post edges

void spinlock_lock(spinlock_t *lock) {

XEDGE(trylock, post);

while (L(trylock, test_and_set(&lock->locked)) == 1)

continue;

}

void spinlock_unlock(spinlock_t *lock) {

VEDGE(pre, unlock);

L(unlock, lock->locked = 0);

}

I We add special pre and post labels to allow specifying
edges to all program order predecessors and successors

I pre and post labels are very important for interface
boundaries

37
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Advanced constraint specification
Cross-loop edges

VEDGE(before, after);

for (i = 0; i < 2; i++) {

L(before, x = i);

L(after, y = i + 10);

}

W[x]=0 W[y]=10 W[x] = 1 W[y] = 11

vo vo

vo

I By default, edges established with all subsequent actions

I Including those in later function invocations
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Advanced constraint specification
Bound edges

for (i = 0; i < 2; i++) {

VEDGE_HERE(before, after);

L(before, x = i);

L(after, y = i + 10);

}

W[x]=0 W[y]=10 W[x] = 1 W[y] = 11

vo vo

I Edge is “bound” in the region dominated by the edge
declaration in the CFG
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Advanced constraint specification
Cross-function constraints

I Also have a way to specify fine-grained cross-function edges

I Important for RCU-style workloads using data dependencies

I Won’t go into details
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Theory
Overview

I Formalized typed core-calculus

I Dynamic semantics explicitly accounts for out-of-order
and speculative execution

I Very weak, to future-proof against new hardware
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Theory
Theorems

I Progress and Preservation

I Interleaving actions with pushes gives sequential consistency

I Data-race-free executions are sequentially consistent

I All formalized in Coq
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Practical?

Explicit programmer-specified constraints on execution order
and visibility of writes are a practical approach for low-level
concurrent programming in the presence of modern hardware
and optimizing compilers.
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Practical?

I Generates efficient code

I Usable model to program with and reason about

I Rigorously specified
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Implementation

I Have a working compiler based on LLVM

I Targets x86, ARMv7, ARMv8, POWER

I https://github.com/msullivan/rmc-compiler

RMC-C++
RMC-annotated

LLVM IR

clang fenced

LLVM IR

rmc-compiler
assembly

llvm
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Implementation
How to compile?

I Compilation driven by the constraints

I Insert code to ensure the constraints hold
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Implementation
Compiling visibility

void send(int msg) {

VEDGE(wdata, wflag);

L(wdata, data = msg);

L(wflag, flag = 1);

}

→

I Visibility edge means wdata must be visible to anything
that sees wflag

I ARM does this with the dmb instruction

47



Implementation
Compiling visibility

void send(int msg) {

VEDGE(wdata, wflag);

L(wdata, data = msg);

L(wflag, flag = 1);

}

→ void send(int msg) {

data = msg;

dmb();

flag = 1;

}

I Visibility edge means wdata must be visible to anything
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I ARM does this with the dmb instruction
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Implementation
Compiling visibility

1

2 3

4

5

vovo

I Insert fences to cut all paths

I Minimize cost of fences

I We use an SMT solver to do it
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Implementation
Compiling execution

XEDGE(rflag, rdata);

while (!L(rflag, flag))

continue;

return L(rdata, data);

→

I Execution edge means rflag must execute before rdata

I On ARM: lots of ways to force things to execute in order!

I
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Implementation
Compiling execution

XEDGE(rflag, rdata);

while (!L(rflag, flag))

continue;

return L(rdata, data);

→ while (!flag)

continue;

dmb();

return data;

I Execution edge means rflag must execute before rdata

I On ARM: lots of ways to force things to execute in order!

I dmb still works
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Implementation
Compiling execution

XEDGE(rflag, rdata);

while (!L(rflag, flag))

continue;

return L(rdata, data);

→ while (!flag)

continue;

isb();

return data;

I Execution edge means rflag must execute before rdata

I On ARM: lots of ways to force things to execute in order!

I Or a control dependency and then an isb
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Implementation
Compiling execution

XEDGE(rflag, rdata);

while (!L(rflag, flag))

continue;

return L(rdata, data);

→ while (!flag)

continue;

dmb_ld();

return data;

I Execution edge means rflag must execute before rdata

I On ARM: lots of ways to force things to execute in order!

I On ARMv8, dmb ld is a general execution edge
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Implementation
Compiling execution

XEDGE_HERE(rptr, rdata);

foo *p = L(rptr, ptr);

return L(rdata, p->data);

→

I Data dependencies ensure ordering

I Being able to take advantage of this is a big selling point
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Implementation
Compiling execution

XEDGE_HERE(rptr, rdata);

foo *p = L(rptr, ptr);

return L(rdata, p->data);

→
foo *p = ptr;

return p->data;

I Data dependencies ensure ordering

I Being able to take advantage of this is a big selling point

50



Implementation
Release/Acquire

void send(int msg) {

VEDGE(wdata, wflag);

L(wdata, data = msg);

L(wflag, flag = 1);

}

→

I ARMv8 basically built the C++11 model into hardware!

I “Store-Release” and “Load-Acquire” (but really SC)
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Implementation
Release/Acquire

void send(int msg) {

VEDGE(wdata, wflag);

L(wdata, data = msg);

L(wflag, flag = 1);

}

→ void send(int msg) {

data = msg;

flag.store_release(1);

}

I ARMv8 basically built the C++11 model into hardware!

I “Store-Release” and “Load-Acquire” (but really SC)
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I “Generates efficient code”

I “Usable model to program with and reason about”

I Evaluated this with case studies

I Implemented RMC, C++11, SC versions
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I Concurrency primitives: mutexes, rwlocks, sequence locks

I Lock-free data structures: queues, stacks, ring buffers

I “read-copy-update” (RCU) and client code
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Efficient?

I Used our case studies for benchmarking

I ARMv7: NVIDIA Jetson TK1 4 CPU ARM Cortex-A15

I ARMv8: ODROID-C2 4 CPU ARM Cortex-A53

I POWER 8 from IBM Power Systems Academic Cloud
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Efficient?
ARMv7
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Efficient?
POWER
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Efficient?
ARMv8
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Usable?
Impressions

I I found the RMC versions easier to understand, reason
about, and modify

I Smallest benefit was for simple cases (like stacks)

I Difference was more pronounced for complex constraints

I Especially when using fences

I I found the easiest way to use C++11 fences was to
essentially run the RMC compiler in my head
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Usable?
My favorite one

I Hans Boehm: “Can Seqlocks Get Along With
Programming Language Memory Models?”

I In C++11, yes, but “exceptionally unnatural” – needs an
“acquire” fence for an unlock operation

I They get along with RMC just fine!
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Usable?
“User Study” (N = 1)

I Two undergrads implemented lock-free data structures
with RMC and C11 for 15-418 final project

I RMC versions performed better

I “using [RMC] was significantly more straightforward than
manually using the C11 atomic intrinsics.”
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Usable?
Takeaways

I Relative ordering is the fundamental concept

I Writing low-level concurrent code requires careful thought
about relative ordering

I So make it explicit!
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Usable?
Takeaways

I Modifying traditional low-level concurrent code requires
reconstructing the necessary ordering invariants!

I From algorithm’s design, comments, tea leaves...

I So make it explicit!
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Usable?
Takeaways

I Modifying traditional low-level concurrent code requires
reconstructing the necessary ordering invariants!

I From algorithm’s design, comments, tea leaves...

I So make it explicit!
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Conclusion

Explicit programmer-specified constraints on execution order
and visibility of writes are a practical approach for low-level
concurrent programming in the presence of modern hardware
and optimizing compilers.

I The compiler is up on github if you want to try it!
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Thank you!

64



What about volatile?

I What about volatile?

I By spec, volatile is totally orthogonal

I “Access to volatile objects are evaluated strictly according
to the rules of the abstract machine” (N4296 §1.9.8.1)

I Races on volatile locations still undefined behavior

I In practice, volatile can be used to tame compiler
behavior (Linux does this)

#define ACCESS_ONCE(x) (*(volatile __typeof__(x) *)&(x))

I Doesn’t say anything about hardware, though, so still
need to handle that
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need to handle that
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Bonus!
C++11 - SC fragment

int data

std::atomic<int> flag = 0;

void send(int msg) {

data = msg;

flag = 1;

}

int recv() {

while (!flag)

continue;

return data;

}
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Bonus!
C++11 - release/acquire

int data

std::atomic<int> flag = 0;

void send(int msg) {

data = msg;

flag.store(std::memory_order_release);

}

int recv() {

while (!flag.load(std::memory_order_acquire))

continue;

return data;

}
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Bonus!
C++11 - release/acquire fences

int data

std::atomic<int> flag = 0;

void send(int msg) {

data = msg;

std::atomic_thread_fence(std::memory_order_release);

flag.store(std::memory_order_relaxed);

}

int recv() {

while (!flag.load(std::memory_order_relaxed))

continue;

std::atomic_thread_fence(std::memory_order_acquire);

return data;

}
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Bonus!
C++11 in RMC

int load_acquire(rmc::atomic<int> *ptr) {

XEDGE(load, post);

return L(load, *ptr);

}

void store_release(rmc::atomic<int> *ptr, int val) {

VEDGE(pre, store);

L(store, *ptr = val);

}
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Bonus!
C++11 in RMC - generalized it

template <typename T>

T load_acquire(rmc::atomic<T> *ptr) {

XEDGE(load, post);

return L(load, *ptr);

}

template <typename T>

void store_release(rmc::atomic<T> *ptr, T val) {

VEDGE(pre, store);

L(store, *ptr = val);

}
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More comparison to C++11

I We give the compiler more flexibility in how to implement
things

I C++11 ring buffers would do two releases, two acquires

I We can get a lot of the benefit of consume without the
large complexities involved
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void buf_enqueue(ring_buf *buf, unsigned char c) {

unsigned back = buf->back;

if (back != SZ + buf->front.load(std::memory_order_acquire)) { // not full

buf->buf[back % SZ] = c;

buf->back.store(back + 1, std::memory_order_release);

}

}

int buf_dequeue(ring_buf *buf) {

int c = -1;

unsigned front = buf->front;

if (front != buf->back.load(std::memory_order_acquire)) { // not empty

c = buf->buf[front % SZ];

buf->front.store(front + 1, std::memory_order_release);

}

return c;

}
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void buf_enqueue(ring_buf *buf, unsigned char c) {

unsigned back = buf->back;

if (back != SZ + buf->front.load(std::memory_order_acquire)) { // not full

buf->buf[back % SZ] = c;

buf->back.store(back + 1, std::memory_order_release);

}

}

int buf_dequeue(ring_buf *buf) {

int c = -1;

unsigned front = buf->front;

if (front != buf->back.load(std::memory_order_acquire)) { // not empty

c = buf->buf[front % SZ];

buf->front.store(front + 1, std::memory_order_release);

}

return c;

}
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Bonus!
Cross-loop edges

VEDGE(before, after);

for (i = 0; i < 2; i++) {

L(before, x = i);

L(after, y = i + 10);

}

W[x]=0 W[y]=10 W[x] = 1 W[y] = 11

vo vo

vo
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Cross-loop edges

VEDGE(before, after);

for (i = 0; i < 2; i++) {

L(after, x = i);

L(before, y = i + 10);

}

W[x]=0 W[y]=10 W[x] = 1 W[y] = 11
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Bonus!
Execution vs. visibility

W[data]=msg R[data]=msg R[flag]=1

W[flag]=1 R[data]=?

rf

addrrfdmb

I Weak memory can not simply be viewed as reordering of
instructions!

I The address dependency from the read to the write has
meaning (it constrains the coherence order of flag), but
doesn’t mean msg needs to be visible everywhere
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Bonus!
Execution vs. visibility

W[data]=msg R[data]=msg R[flag]=1

W[flag]=1 R[data]=?

rf

xorfvo

I Visibility pushes out visibility to other threads transitively

I Execution doesn’t
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Bonus!
Execution vs. visibility

R[x]=? R[y]=1

W[y]=1 W[x]=1

xo xorf

I There is a notion of the order things “execute in” - trace order

I Execution order, visibility order, reads from all must agree
with it
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Execution vs. visibility

R[x]=? R[y]=1

W[y]=1 W[x]=1

xo xorfrf

I There is a notion of the order things “execute in” - trace order

I Execution order, visibility order, reads from all must agree
with it
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void buf_enqueue(ring_buf *buf, unsigned char c) {

unsigned back = buf->back;

if (back != SZ + buf->front) { // not full

buf->buf[back % SZ] = c;

buf->back = back + 1;

}

}

int buf_dequeue(ring_buf *buf) {

int c = -1;

unsigned front = buf->front;

if (front != buf->back) { // not empty

c = buf->buf[front % SZ];

buf->front = front + 1;

}

return c;

}

echeck

write

xo

dcheck

eupdate

vo

read
rf

dupdate

xo

xo

rf
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Dead store elimination

x = 1;

y = 1;

x = 2;
→ y = 1;

x = 2;

Another thread could observe y = 1 without observing x = 1
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Bonus!
Non-atomics

I Atomic locations too strong to use for everything

I Each read reads from exactly one write

I All writes eventually reach all threads

I Followed C++ in having non-atomics with undefined
behavior for races
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Bonus!
Sequential consistency

void sc_store(rmc::atomic<int> *p, int val) {

PEDGE(pre, store);

L(store, *p = val);

}

int sc_load(rmc::atomic<int> *p) {

PEDGE(pre, load);

XEDGE(load, post);

return L(load, *p);

}

I “SC atomics” could be implemented using pushes

I Stronger than we need, though

I Extra strength has real performance costs

I Added an efficient SC fragment
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Advanced constraint specification
Cross-function constraints

foo *get_foo() {

return L(rptr, ptr);

}

int stuff() {

foo *p = get_foo();

return L(rdata, p->data);

}

I How to specify cross-function edges?

I These solutions rule out using data dependencies

I LGIVE and LTAKE allow returning values to be treated as a
pseudo-action
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Advanced constraint specification
Cross-function constraints

foo *get_foo() {

XEDGE_HERE(rptr, ret);

foo *p = L(rptr, ptr);

return LGIVE(ret, p);

}

int stuff() {

XEDGE_HERE(get, rdata);

foo *p = LTAKE(get, get_foo());

return L(rdata, p->data);

}

I How to specify cross-function edges?

I These solutions rule out using data dependencies

I LGIVE and LTAKE allow returning values to be treated as a
pseudo-action
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Related Work

I Java memory model (Manson et al. 2005)

I C++ memory model (Boehm and Adve 2008, Batty et al.
2010)

I Sarkar, et al. 2011; POWER operational model
I Direct inspiration for our system

I Alglave et al. 2014; generic framework, “leapfrogging
writes”

I Jagadeesan et al. 2010; operational model for Java
I Our mechanism for speculation adapted from this

I Boehm and Demsky 2014; “out-of-thin-air” results worse
than we realized
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