
Low-level Concurrent Programming Using

the Relaxed Memory Calculus

Michael J. Sullivan

Oct 24, 2017

1



Outline

Thesis statement

Relaxed memory

Relaxed Memory Calculus (RMC)

Compiler

Evaluation

2



Thesis statement

Explicit programmer-specified constraints on execution order
and visibility of writes are a practical approach for low-level
concurrent programming in the presence of modern hardware
and optimizing compilers.

3



Low-level concurrent programming?

Explicit programmer-specified constraints on execution order
and visibility of writes are a practical approach for low-level
concurrent programming in the presence of modern hardware
and optimizing compilers.

4



I Imperative shared-memory concurrency

I Without locks around all shared data

I “Lock-free algorithms”

I Hard, even under the the best of circumstances

I To be avoided, except when you can’t (perf-critical code,
implementation of system libraries, ...)

5



I Imperative shared-memory concurrency

I Without locks around all shared data

I “Lock-free algorithms”

I Hard, even under the the best of circumstances

I To be avoided, except when you can’t (perf-critical code,
implementation of system libraries, ...)

5



“The best of circumstances”

I Sequential consistency (SC)

I Threads interleave instructions

I Modifying a single shared memory

6



Example

int data, flag = 0;

void send(int msg) {

data = msg;

flag = 1;

}

int recv() {

while (!flag)

continue;

return data;

}

I Two threads: one wants to send a single message to the other

I Correctness: recv() only returns the value passed to send()

I If the read from flag returns 1, the read from data must
return the sent value

7



Example

int data, flag = 0;

void send(int msg) {

data = msg;

flag = 1;

}

int recv() {

while (!flag)

continue;

return data;

}

I Two threads: one wants to send a single message to the other

I Correctness: recv() only returns the value passed to send()

I If the read from flag returns 1, the read from data must
return the sent value

7



Modernity

Explicit programmer-specified constraints on execution order
and visibility of writes are a practical approach for low-level
concurrent programming in the presence of modern hardware
and optimizing compilers.

8



Modernity
CPU trouble

I No major processor promises SC

I Out-of-order and speculative execution

I Write buffers, caches

I Expensive to maintain SC while having these

9



Modernity
CPU trouble

I Since most code isn’t sharing memory, architectures provide a
weaker model

I And explicit fence instructions for when you do share memory

10



Modernity
CPU trouble

I Can’t view the weak behavior as simply reordering
instructions!

I Writes can become visible to CPUs in different orders

I Execution order on the CPU and visibility order inside the
memory system are separate phenomena

11



Modernity
It’s not just the CPU

int data, flag = 0;

void send(int msg) {

data = msg;

flag = 1;

}

int recv() {

while (!flag)

continue;

return data;

}

Compiler might...

12



Modernity
It’s not just the CPU

int data, flag = 0;

void send(int msg) {

data = msg;

flag = 1;

}

int recv() {

while (!flag)

continue;

return data;

}

Compiler might... hoist the load from flag

int data, flag = 0;

void send(int msg) {

data = msg;

flag = 1;

}

int recv() {

if (!flag) {

while (1) continue;

}

return data;

}

12



Modernity
It’s not just the CPU

int data, flag = 0;

void send(int msg) {

data = msg;

flag = 1;

}

int recv() {

while (!flag)

continue;

return data;

}

Compiler might... reorder the writes in send()

int data, flag = 0;

void send(int msg) {

flag = 1;

data = msg;

}

int recv() {

while (!flag)

continue;

return data;

}

12



Modernity
It’s not just the CPU

int data, flag = 0;

void send(int msg) {

data = msg;

flag = 1;

}

int recv() {

while (!flag)

continue;

return data;

}

Compiler might... reorder the reads in recv()

int data, flag = 0;

void send(int msg) {

data = msg;

flag = 1;

}

int recv() {

int rd = data;

while (!flag)

continue;

return rd;

}

12



Modernity
Compiler trouble

I The loop hoisting is likely

I The reorderings are possible; similar reorderings are more likely

I SC can be violated by: common sub-expression elimination,
loop hoisting, some forms of dead code elimination, ...

I Optimizations sound for single-threaded code

13



Modernity

Explicit programmer-specified constraints on execution order
and visibility of writes are a practical approach for low-level
concurrent programming in the presence of modern hardware
and optimizing compilers.

14



Approaches

I “Threads Cannot be Implemented as a Library”

I This is a language design issue

I Language must define semantics for concurrent programs

15



Approaches
Starting point

I Provide mutexes that can be used to prevent data races

I (Data race: two threads accessing the same location “at
the same time”, at least one while writing)

I Promise sequential consistency if no data races

I Most single-threaded optimizations permitted

16



Approaches
From there?

I And if there are data races?

I Java: very weak semantics
I C++: no semantics (“undefined behavior”)

I What to offer for “low-level” concurrency?

I Wide open design space!

17



Approaches
From there?

I And if there are data races?
I Java: very weak semantics
I C++: no semantics (“undefined behavior”)

I What to offer for “low-level” concurrency?

I Wide open design space!

17



Approaches
From there?

I And if there are data races?
I Java: very weak semantics
I C++: no semantics (“undefined behavior”)

I What to offer for “low-level” concurrency?
I Wide open design space!

17



Approaches
Sequentially consistent atomics

I Add locations that may be accessed concurrently
I Java: volatile int flag;

I C++: std::atomic<int> flag;

I “Don’t count” towards data races

I Can use these concurrently without losing SC

I Really nice model! But expensive, and strong...

18



Approaches
Sequentially consistent atomics

I Add locations that may be accessed concurrently
I Java: volatile int flag;

I C++: std::atomic<int> flag;

I “Don’t count” towards data races

I Can use these concurrently without losing SC

I Really nice model! But expensive, and strong...

18



Approaches
C++11 low-level atomics

High-level

Locks

Mid-level

SC atomics

Low-level

release, acquire

Very low-level

consume,
relaxed, fences

I Want better performance, will accept weaker semantics

I Mark accesses to atomic locations with “memory orders”:
seq cst, release, acquire, rel acq

I And consume and relaxed...

I And memory fences, with memory orders

19



Approaches
C++11 low-level atomics

High-level

Locks

Mid-level

SC atomics

Low-level

release, acquire

Very low-level

consume,
relaxed, fences

I Want better performance, will accept weaker semantics

I Mark accesses to atomic locations with “memory orders”:
seq cst, release, acquire, rel acq

I And consume and relaxed...

I And memory fences, with memory orders

19



Approaches
C++11 low-level atomics

High-level

Locks

Mid-level

SC atomics

Low-level

release, acquire

Very low-level

consume,
relaxed, fences

I Want better performance, will accept weaker semantics

I Mark accesses to atomic locations with “memory orders”:
seq cst, release, acquire, rel acq

I And consume and relaxed...

I And memory fences, with memory orders

19



Approaches
C++11 low-level atomics

I Relations like “synchronizes with” and “happens before” are
inferred from these

I “Happens before” isn’t transitive

I “Sequentially consistent” fences can’t restore sequential
consistency

I We think we can do better

20



Approaches
C++11 low-level atomics

I Relations like “synchronizes with” and “happens before” are
inferred from these

I “Happens before” isn’t transitive

I “Sequentially consistent” fences can’t restore sequential
consistency

I We think we can do better

20



Approaches
C++11 low-level atomics

I Relations like “synchronizes with” and “happens before” are
inferred from these

I “Happens before” isn’t transitive

I “Sequentially consistent” fences can’t restore sequential
consistency

I We think we can do better

20



Where RMC fits

C++:

High-level

Locks

Mid-level

SC atomics

Low-level

release, acquire

Very low-level

consume,
relaxed, fences

RMC:

High-level

Locks

Mid-level

SC atomics

Low-level

Ordering constraints

I Some subtlety in integrating SC and weaker

I But our main focus is on the low-level

21



Where RMC fits

C++:

High-level

Locks

Mid-level

SC atomics

Low-level

release, acquire

Very low-level

consume,
relaxed, fences

RMC:

High-level

Locks

Mid-level

SC atomics

Low-level

Ordering constraints

I Some subtlety in integrating SC and weaker

I But our main focus is on the low-level

21



Where RMC fits

C++:

High-level

Locks

Mid-level

SC atomics

Low-level

release, acquire

Very low-level

consume,
relaxed, fences

RMC:

High-level

Locks

Mid-level

SC atomics

Low-level

Ordering constraints

I Some subtlety in integrating SC and weaker

I But our main focus is on the low-level

21



Constraints

Explicit programmer-specified constraints on execution order
and visibility of writes are a practical approach for low-level
concurrent programming in the presence of modern hardware
and optimizing compilers.

22



Constraints

int data, flag = 0;

void send(int msg) {

data = msg;

flag = 1;

}

int recv() {

while (!flag)

continue;

return data;

}

I What do we need for this code to work?

I flag can be accessed concurrently

I If the write to flag is visible to other threads, the write to
data must be also (vo = visibility order)

I The read from flag must execute before the read from
data (xo = execution order)

I The combination ensures that the write to data is visible
to the read

23



Constraints

int data, flag = 0;

void send(int msg) {

data = msg;

flag = 1;

}

int recv() {

while (!flag)

continue;

return data;

}

I What do we need for this code to work?

I flag can be accessed concurrently

I If the write to flag is visible to other threads, the write to
data must be also (vo = visibility order)

I The read from flag must execute before the read from
data (xo = execution order)

I The combination ensures that the write to data is visible
to the read

23



Constraints

int data, flag = 0;

void send(int msg) {

data = msg;

flag = 1;

}

int recv() {

while (!flag)

continue;

return data;

}

I What do we need for this code to work?

I flag can be accessed concurrently

I If the write to flag is visible to other threads, the write to
data must be also (vo = visibility order)

I The read from flag must execute before the read from
data (xo = execution order)

I The combination ensures that the write to data is visible
to the read

vo

23



Constraints

int data, flag = 0;

void send(int msg) {

data = msg;

flag = 1;

}

int recv() {

while (!flag)

continue;

return data;

}

I What do we need for this code to work?

I flag can be accessed concurrently

I If the write to flag is visible to other threads, the write to
data must be also (vo = visibility order)

I The read from flag must execute before the read from
data (xo = execution order)

I The combination ensures that the write to data is visible
to the read

vo

xo

23



Constraints

int data, flag = 0;

void send(int msg) {

data = msg;

flag = 1;

}

int recv() {

while (!flag)

continue;

return data;

}

I What do we need for this code to work?

I flag can be accessed concurrently

I If the write to flag is visible to other threads, the write to
data must be also (vo = visibility order)

I The read from flag must execute before the read from
data (xo = execution order)

I The combination ensures that the write to data is visible
to the read

vo

xo

23



Constraints

W[data]=msg R[flag]=1

W[flag]=1 R[data]=?

vo xorf

I The combination ensures that the write to data is visible
to the read

I The read must read from it (or a later write)

I (rf = reads from)

24



Constraints

W[data]=msg R[flag]=1

W[flag]=1 R[data]=msg

vo xorf

rf

I The combination ensures that the write to data is visible
to the read

I The read must read from it (or a later write)

I (rf = reads from)

24



RMC

Explicit programmer-specified constraints on execution order
and visibility of writes are a practical approach for low-level
concurrent programming in the presence of modern hardware
and optimizing compilers.

25



RMC
Concrete syntax

int data;

rmc::atomic<int> flag = 0;

void send(int msg) {

VEDGE(wdata, wflag);

L(wdata, data = msg);

L(wflag, flag = 1);

}

int recv() {

XEDGE(rflag, rdata);

while (!L(rflag, flag))

continue;

return L(rdata, data);

}

I L(label, expr) labels an expression

I VEDGE and XEDGE establish visibility and execution edges

I rmc::atomic<int> flag declares a variable that can be
accessed concurrently

26



Ring buffer

typedef struct {

unsigned char buf[SZ];

rmc::atomic<unsigned> front, back;

} ring_buf_t;

I Example adapted from the Linux Kernel

I Lock-free fixed size FIFO buffer

I One producer, one consumer

I Producer increments back, consumer increments front.

I Empty when back - front == 0, full when
back - front == SZ.

27



void buf_enqueue(ring_buf *buf, unsigned char c) {

unsigned back = buf->back;

if (back != SZ + buf->front) { // not full

buf->buf[back % SZ] = c;

buf->back = back + 1;

}

}

int buf_dequeue(ring_buf *buf) {

int c = -1;

unsigned front = buf->front;

if (front != buf->back) { // not empty

c = buf->buf[front % SZ];

buf->front = front + 1;

}

return c;

}

I Message passing: values enqueued will be visible to dequeuer

I Ensure the value is read before its space is marked as free

I Don’t write a value until we know its space is free

28



void buf_enqueue(ring_buf *buf, unsigned char c) {

unsigned back = buf->back;

if (back != SZ + buf->front) { // not full

buf->buf[back % SZ] = c;

buf->back = back + 1;

}

}

int buf_dequeue(ring_buf *buf) {

int c = -1;

unsigned front = buf->front;

if (front != buf->back) { // not empty

c = buf->buf[front % SZ];

buf->front = front + 1;

}

return c;

}

I Message passing: values enqueued will be visible to dequeuer

I Ensure the value is read before its space is marked as free

I Don’t write a value until we know its space is free

28



void buf_enqueue(ring_buf *buf, unsigned char c) {

unsigned back = buf->back;

if (back != SZ + buf->front) { // not full

buf->buf[back % SZ] = c;

buf->back = back + 1;

}

}

int buf_dequeue(ring_buf *buf) {

int c = -1;

unsigned front = buf->front;

if (front != buf->back) { // not empty

c = buf->buf[front % SZ];

buf->front = front + 1;

}

return c;

}

I Message passing: values enqueued will be visible to dequeuer

I Ensure the value is read before its space is marked as free

I Don’t write a value until we know its space is free

28



void buf_enqueue(ring_buf *buf, unsigned char c) {

unsigned back = buf->back;

if (back != SZ + buf->front) { // not full

buf->buf[back % SZ] = c;

buf->back = back + 1;

}

}

int buf_dequeue(ring_buf *buf) {

int c = -1;

unsigned front = buf->front;

if (front != buf->back) { // not empty

c = buf->buf[front % SZ];

buf->front = front + 1;

}

return c;

}

I Message passing: values enqueued will be visible to dequeuer

I Ensure the value is read before its space is marked as free

I Don’t write a value until we know its space is free

28



void buf_enqueue(ring_buf *buf, unsigned char c) {

unsigned back = buf->back;

if (back != SZ + buf->front) { // not full

buf->buf[back % SZ] = c;

buf->back = back + 1;

}

}

int buf_dequeue(ring_buf *buf) {

int c = -1;

unsigned front = buf->front;

if (front != buf->back) { // not empty

c = buf->buf[front % SZ];

buf->front = front + 1;

}

return c;

}

I Message passing: values enqueued will be visible to dequeuer

I Ensure the value is read before its space is marked as free

I Don’t write a value until we know its space is free

28



void buf_enqueue(ring_buf *buf, unsigned char c) {

XEDGE(echeck, insert);

VEDGE(insert, eupdate);

unsigned back = buf->back;

if (back != SZ + L(echeck, buf->front)) {

L(insert, buf->buf[back % SZ] = c);

L(eupdate, buf->back = back + 1);

}

}

29



Pushes
Rationale

I Consider the following (broken!) code, which could be a
snippet from a mutual exclusion algorithm

lock1 = 1;

if (!lock2) {

// Critical section

}

lock2 = 1;

if (!lock1) {

// Critical section

}

I Could let both threads into critical section

I Can’t fix this with visibility or execution edges

I Need write to become globally visible before read

30



Pushes
Rationale

I Consider the following (broken!) code, which could be a
snippet from a mutual exclusion algorithm

lock1 = 1;

if (!lock2) {

// Critical section

}

lock2 = 1;

if (!lock1) {

// Critical section

}

I Could let both threads into critical section

I Can’t fix this with visibility or execution edges

I Need write to become globally visible before read

30



Pushes
Rationale

I Consider the following (broken!) code, which could be a
snippet from a mutual exclusion algorithm

lock1 = 1;

if (!lock2) {

// Critical section

}

lock2 = 1;

if (!lock1) {

// Critical section

}

I Could let both threads into critical section

I Can’t fix this with visibility or execution edges

I Need write to become globally visible before read

30



Pushes

I Pushes are globally visible actions–visible before
everything that executes after them

I Visibility between pushes is thus a total order

I Doesn’t do much on its own; combined with execution
and visibility edges to constrain behavior

I Architecturally, a full fence. Stalls execution until things
are visible

31



Pushes
Using pushes

W[lock1] = 1 W[lock2]=1

push push

R[lock2]=? R[lock1]=?

vo

xo

vo

xo

I Push is visibility after the write, execution before the read

I One of the pushes needs to be visible to the other

I Which makes the write visible to the other thread’s read

32



Pushes
Using pushes

W[lock1] = 1 W[lock2]=1

push push

R[lock2]=? R[lock1]=?

vo

xo

vo

xo

vo

I Push is visibility after the write, execution before the read

I One of the pushes needs to be visible to the other

I Which makes the write visible to the other thread’s read

32



Pushes
Using pushes

W[lock1] = 1 W[lock2]=1

push push

R[lock2]=? R[lock1]=1

vo

xo

vo

xo

vo

rf

I Push is visibility after the write, execution before the read

I One of the pushes needs to be visible to the other

I Which makes the write visible to the other thread’s read

32



Pushes
Using pushes

W[lock1] = 1 W[lock2]=1

push push

R[lock2]=? R[lock1]=?

vo

xo

vo

xo

vo

I Push is visibility after the write, execution before the read

I One of the pushes needs to be visible to the other

I Which makes the write visible to the other thread’s read

32



Pushes
Using pushes

W[lock1] = 1 W[lock2]=1

push push

R[lock2]=1 R[lock1]=?

vo

xo

vo

xo

vo

rf

I Push is visibility after the write, execution before the read

I One of the pushes needs to be visible to the other

I Which makes the write visible to the other thread’s read

32



Pushes
Push syntax

VEDGE(write, flush);

XEDGE(flush, read);

L(write, lock1 = 1);

L(flush, rmc::push());

if (!L(read, lock2)) {

// Critical section

}

33



Pushes
Push syntax - push edges

PEDGE(write, read);

L(write, lock1 = 1);

if (!L(read, lock2)) {

// Critical section

}

34



That’s the heart of it

I Two core concepts: execution and visibility order

I Pushes, which are defined in terms of them

I More to talk about, but all about how to specify constraints!

35



That’s the heart of it

I Two core concepts: execution and visibility order

I Pushes, which are defined in terms of them

I More to talk about, but all about how to specify constraints!

35



Advanced constraint specification
Spinlocks

void spinlock_lock(spinlock_t *lock) {

while (test_and_set(&lock->locked) == 1)

continue;

}

void spinlock_unlock(spinlock_t *lock) {

lock->locked = 0;

}

I What constraints do we need to use these in a program?

I The body of the critical section must execute after
spinlock_lock and before spinlock_unlock

I And visible before spinlock_unlock

I Only allowing constraints from label-to-label is
cumbersome and anti-modular

36



Advanced constraint specification
Spinlocks

void spinlock_lock(spinlock_t *lock) {

while (test_and_set(&lock->locked) == 1)

continue;

}

void spinlock_unlock(spinlock_t *lock) {

lock->locked = 0;

}

I What constraints do we need to use these in a program?

I The body of the critical section must execute after
spinlock_lock and before spinlock_unlock

I And visible before spinlock_unlock

I Only allowing constraints from label-to-label is
cumbersome and anti-modular

36



Advanced constraint specification
Spinlocks

void spinlock_lock(spinlock_t *lock) {

while (test_and_set(&lock->locked) == 1)

continue;

}

void spinlock_unlock(spinlock_t *lock) {

lock->locked = 0;

}

I What constraints do we need to use these in a program?

I The body of the critical section must execute after
spinlock_lock and before spinlock_unlock

I And visible before spinlock_unlock

I Only allowing constraints from label-to-label is
cumbersome and anti-modular

36



Advanced constraint specification
Pre and post edges

void spinlock_lock(spinlock_t *lock) {

XEDGE(trylock, post);

while (L(trylock, test_and_set(&lock->locked)) == 1)

continue;

}

void spinlock_unlock(spinlock_t *lock) {

VEDGE(pre, unlock);

L(unlock, lock->locked = 0);

}

I We add special pre and post labels to allow specifying
edges to all program order predecessors and successors

I pre and post labels are very important for interface
boundaries

37



Advanced constraint specification
Pre and post edges

void spinlock_lock(spinlock_t *lock) {

XEDGE(trylock, post);

while (L(trylock, test_and_set(&lock->locked)) == 1)

continue;

}

void spinlock_unlock(spinlock_t *lock) {

VEDGE(pre, unlock);

L(unlock, lock->locked = 0);

}

I We add special pre and post labels to allow specifying
edges to all program order predecessors and successors

I pre and post labels are very important for interface
boundaries

37



Advanced constraint specification
Cross-loop edges

VEDGE(before, after);

for (i = 0; i < 2; i++) {

L(before, x = i);

L(after, y = i + 10);

}

W[x]=0 W[y]=10 W[x] = 1 W[y] = 11

vo vo

vo

I By default, edges established with all subsequent actions

I Including those in later function invocations

38



Advanced constraint specification
Bound edges

for (i = 0; i < 2; i++) {

VEDGE_HERE(before, after);

L(before, x = i);

L(after, y = i + 10);

}

W[x]=0 W[y]=10 W[x] = 1 W[y] = 11

vo vo

I Edge is “bound” in the region dominated by the edge
declaration in the CFG

39



Advanced constraint specification
Cross-function constraints

I Also have a way to specify fine-grained cross-function edges

I Important for RCU-style workloads using data dependencies

I Won’t go into details

40



Theory
Overview

I Formalized typed core-calculus

I Dynamic semantics explicitly accounts for out-of-order
and speculative execution

I Very weak, to future-proof against new hardware

41



Theory
Theorems

I Progress and Preservation

I Interleaving actions with pushes gives sequential consistency

I Data-race-free executions are sequentially consistent

I All formalized in Coq

42



Practical?

Explicit programmer-specified constraints on execution order
and visibility of writes are a practical approach for low-level
concurrent programming in the presence of modern hardware
and optimizing compilers.

43



Practical?

I Generates efficient code

I Usable model to program with and reason about

I Rigorously specified

44



Implementation

I Have a working compiler based on LLVM

I Targets x86, ARMv7, ARMv8, POWER

I https://github.com/msullivan/rmc-compiler

RMC-C++
RMC-annotated

LLVM IR

clang fenced

LLVM IR

rmc-compiler
assembly

llvm

45

https://github.com/msullivan/rmc-compiler


Implementation
How to compile?

I Compilation driven by the constraints

I Insert code to ensure the constraints hold

46



Implementation
Compiling visibility

void send(int msg) {

VEDGE(wdata, wflag);

L(wdata, data = msg);

L(wflag, flag = 1);

}

→

I Visibility edge means wdata must be visible to anything
that sees wflag

I ARM does this with the dmb instruction

47



Implementation
Compiling visibility

void send(int msg) {

VEDGE(wdata, wflag);

L(wdata, data = msg);

L(wflag, flag = 1);

}

→ void send(int msg) {

data = msg;

dmb();

flag = 1;

}

I Visibility edge means wdata must be visible to anything
that sees wflag

I ARM does this with the dmb instruction

47



Implementation
Compiling visibility

1

2 3

4

5

vovo

I Insert fences to cut all paths

I Minimize cost of fences

I We use an SMT solver to do it

48



Implementation
Compiling visibility

1

2 3

4

5

vovo

I Insert fences to cut all paths

I Minimize cost of fences

I We use an SMT solver to do it

48



Implementation
Compiling execution

XEDGE(rflag, rdata);

while (!L(rflag, flag))

continue;

return L(rdata, data);

→

I Execution edge means rflag must execute before rdata

I On ARM: lots of ways to force things to execute in order!

I

49



Implementation
Compiling execution

XEDGE(rflag, rdata);

while (!L(rflag, flag))

continue;

return L(rdata, data);

→ while (!flag)

continue;

dmb();

return data;

I Execution edge means rflag must execute before rdata

I On ARM: lots of ways to force things to execute in order!

I dmb still works

49



Implementation
Compiling execution

XEDGE(rflag, rdata);

while (!L(rflag, flag))

continue;

return L(rdata, data);

→ while (!flag)

continue;

isb();

return data;

I Execution edge means rflag must execute before rdata

I On ARM: lots of ways to force things to execute in order!

I Or a control dependency and then an isb

49



Implementation
Compiling execution

XEDGE(rflag, rdata);

while (!L(rflag, flag))

continue;

return L(rdata, data);

→ while (!flag)

continue;

dmb_ld();

return data;

I Execution edge means rflag must execute before rdata

I On ARM: lots of ways to force things to execute in order!

I On ARMv8, dmb ld is a general execution edge

49



Implementation
Compiling execution

XEDGE_HERE(rptr, rdata);

foo *p = L(rptr, ptr);

return L(rdata, p->data);

→

I Data dependencies ensure ordering

I Being able to take advantage of this is a big selling point

50



Implementation
Compiling execution

XEDGE_HERE(rptr, rdata);

foo *p = L(rptr, ptr);

return L(rdata, p->data);

→
foo *p = ptr;

return p->data;

I Data dependencies ensure ordering

I Being able to take advantage of this is a big selling point

50



Implementation
Release/Acquire

void send(int msg) {

VEDGE(wdata, wflag);

L(wdata, data = msg);

L(wflag, flag = 1);

}

→

I ARMv8 basically built the C++11 model into hardware!

I “Store-Release” and “Load-Acquire” (but really SC)

51



Implementation
Release/Acquire

void send(int msg) {

VEDGE(wdata, wflag);

L(wdata, data = msg);

L(wflag, flag = 1);

}

→ void send(int msg) {

data = msg;

flag.store_release(1);

}

I ARMv8 basically built the C++11 model into hardware!

I “Store-Release” and “Load-Acquire” (but really SC)

51



I “Generates efficient code”

I “Usable model to program with and reason about”

I Evaluated this with case studies

I Implemented RMC, C++11, SC versions

52



I Concurrency primitives: mutexes, rwlocks, sequence locks

I Lock-free data structures: queues, stacks, ring buffers

I “read-copy-update” (RCU) and client code

53



Efficient?

I Used our case studies for benchmarking

I ARMv7: NVIDIA Jetson TK1 4 CPU ARM Cortex-A15

I ARMv8: ODROID-C2 4 CPU ARM Cortex-A53

I POWER 8 from IBM Power Systems Academic Cloud

54



Efficient?
ARMv7

queue
epoch

queue
freelist

stack
epoch

stack
freelist

qspinlock rculist epoch ringbuf aggregate
0.0

0.2

0.4

0.6

0.8

1.0

1.2

tim
e 

re
la

tiv
e 

to
 sc

c11
rmc

55



Efficient?
POWER

queue
epoch

queue
freelist

stack
epoch

stack
freelist

qspinlock rculist epoch ringbuf aggregate
0.0

0.2

0.4

0.6

0.8

1.0

tim
e 

re
la

tiv
e 

to
 sc

c11
rmc

56



Efficient?
ARMv8

queue
epoch

queue
freelist

stack
epoch

stack
freelist

qspinlock rculist epoch ringbuf aggregate
0.0

0.2

0.4

0.6

0.8

1.0

1.2

tim
e 

re
la

tiv
e 

to
 sc

c11
rmc

57



Usable?
Impressions

I I found the RMC versions easier to understand, reason
about, and modify

I Smallest benefit was for simple cases (like stacks)

I Difference was more pronounced for complex constraints

I Especially when using fences

I I found the easiest way to use C++11 fences was to
essentially run the RMC compiler in my head

58



Usable?
Impressions

I I found the RMC versions easier to understand, reason
about, and modify

I Smallest benefit was for simple cases (like stacks)

I Difference was more pronounced for complex constraints

I Especially when using fences

I I found the easiest way to use C++11 fences was to
essentially run the RMC compiler in my head

58



Usable?
My favorite one

I Hans Boehm: “Can Seqlocks Get Along With
Programming Language Memory Models?”

I In C++11, yes, but “exceptionally unnatural” – needs an
“acquire” fence for an unlock operation

I They get along with RMC just fine!

59



Usable?
“User Study” (N = 1)

I Two undergrads implemented lock-free data structures
with RMC and C11 for 15-418 final project

I RMC versions performed better

I “using [RMC] was significantly more straightforward than
manually using the C11 atomic intrinsics.”

60



Usable?
Takeaways

I Relative ordering is the fundamental concept

I Writing low-level concurrent code requires careful thought
about relative ordering

I So make it explicit!

61



Usable?
Takeaways

I Relative ordering is the fundamental concept

I Writing low-level concurrent code requires careful thought
about relative ordering

I So make it explicit!

61



Usable?
Takeaways

I Modifying traditional low-level concurrent code requires
reconstructing the necessary ordering invariants!

I From algorithm’s design, comments, tea leaves...

I So make it explicit!

62



Usable?
Takeaways

I Modifying traditional low-level concurrent code requires
reconstructing the necessary ordering invariants!

I From algorithm’s design, comments, tea leaves...

I So make it explicit!

62



Usable?
Takeaways

I Modifying traditional low-level concurrent code requires
reconstructing the necessary ordering invariants!

I From algorithm’s design, comments, tea leaves...

I So make it explicit!

62



Conclusion

Explicit programmer-specified constraints on execution order
and visibility of writes are a practical approach for low-level
concurrent programming in the presence of modern hardware
and optimizing compilers.

I The compiler is up on github if you want to try it!

63



Thank you!

64



What about volatile?

I What about volatile?

I By spec, volatile is totally orthogonal

I “Access to volatile objects are evaluated strictly according
to the rules of the abstract machine” (N4296 §1.9.8.1)

I Races on volatile locations still undefined behavior

I In practice, volatile can be used to tame compiler
behavior (Linux does this)

#define ACCESS_ONCE(x) (*(volatile __typeof__(x) *)&(x))

I Doesn’t say anything about hardware, though, so still
need to handle that

65



What about volatile?

I What about volatile?

I By spec, volatile is totally orthogonal

I “Access to volatile objects are evaluated strictly according
to the rules of the abstract machine” (N4296 §1.9.8.1)

I Races on volatile locations still undefined behavior

I In practice, volatile can be used to tame compiler
behavior (Linux does this)

#define ACCESS_ONCE(x) (*(volatile __typeof__(x) *)&(x))

I Doesn’t say anything about hardware, though, so still
need to handle that

65



What about volatile?

I What about volatile?

I By spec, volatile is totally orthogonal

I “Access to volatile objects are evaluated strictly according
to the rules of the abstract machine” (N4296 §1.9.8.1)

I Races on volatile locations still undefined behavior

I In practice, volatile can be used to tame compiler
behavior (Linux does this)

#define ACCESS_ONCE(x) (*(volatile __typeof__(x) *)&(x))

I Doesn’t say anything about hardware, though, so still
need to handle that

65



What about volatile?

I What about volatile?

I By spec, volatile is totally orthogonal

I “Access to volatile objects are evaluated strictly according
to the rules of the abstract machine” (N4296 §1.9.8.1)

I Races on volatile locations still undefined behavior

I In practice, volatile can be used to tame compiler
behavior (Linux does this)

#define ACCESS_ONCE(x) (*(volatile __typeof__(x) *)&(x))

I Doesn’t say anything about hardware, though, so still
need to handle that

65



Bonus!
C++11 - SC fragment

int data

std::atomic<int> flag = 0;

void send(int msg) {

data = msg;

flag = 1;

}

int recv() {

while (!flag)

continue;

return data;

}

66



Bonus!
C++11 - release/acquire

int data

std::atomic<int> flag = 0;

void send(int msg) {

data = msg;

flag.store(std::memory_order_release);

}

int recv() {

while (!flag.load(std::memory_order_acquire))

continue;

return data;

}

67



Bonus!
C++11 - release/acquire fences

int data

std::atomic<int> flag = 0;

void send(int msg) {

data = msg;

std::atomic_thread_fence(std::memory_order_release);

flag.store(std::memory_order_relaxed);

}

int recv() {

while (!flag.load(std::memory_order_relaxed))

continue;

std::atomic_thread_fence(std::memory_order_acquire);

return data;

}

68



Bonus!
C++11 in RMC

int load_acquire(rmc::atomic<int> *ptr) {

XEDGE(load, post);

return L(load, *ptr);

}

void store_release(rmc::atomic<int> *ptr, int val) {

VEDGE(pre, store);

L(store, *ptr = val);

}

69



Bonus!
C++11 in RMC - generalized it

template <typename T>

T load_acquire(rmc::atomic<T> *ptr) {

XEDGE(load, post);

return L(load, *ptr);

}

template <typename T>

void store_release(rmc::atomic<T> *ptr, T val) {

VEDGE(pre, store);

L(store, *ptr = val);

}

70



More comparison to C++11

I We give the compiler more flexibility in how to implement
things

I C++11 ring buffers would do two releases, two acquires

I We can get a lot of the benefit of consume without the
large complexities involved

71



void buf_enqueue(ring_buf *buf, unsigned char c) {

unsigned back = buf->back;

if (back != SZ + buf->front.load(std::memory_order_acquire)) { // not full

buf->buf[back % SZ] = c;

buf->back.store(back + 1, std::memory_order_release);

}

}

int buf_dequeue(ring_buf *buf) {

int c = -1;

unsigned front = buf->front;

if (front != buf->back.load(std::memory_order_acquire)) { // not empty

c = buf->buf[front % SZ];

buf->front.store(front + 1, std::memory_order_release);

}

return c;

}

72



void buf_enqueue(ring_buf *buf, unsigned char c) {

unsigned back = buf->back;

if (back != SZ + buf->front.load(std::memory_order_acquire)) { // not full

buf->buf[back % SZ] = c;

buf->back.store(back + 1, std::memory_order_release);

}

}

int buf_dequeue(ring_buf *buf) {

int c = -1;

unsigned front = buf->front;

if (front != buf->back.load(std::memory_order_acquire)) { // not empty

c = buf->buf[front % SZ];

buf->front.store(front + 1, std::memory_order_release);

}

return c;

}

72



Bonus!
Cross-loop edges

VEDGE(before, after);

for (i = 0; i < 2; i++) {

L(before, x = i);

L(after, y = i + 10);

}

W[x]=0 W[y]=10 W[x] = 1 W[y] = 11

vo vo

vo

73



Bonus!
Cross-loop edges

VEDGE(before, after);

for (i = 0; i < 2; i++) {

L(after, x = i);

L(before, y = i + 10);

}

W[x]=0 W[y]=10 W[x] = 1 W[y] = 11

vo

74



Bonus!
Execution vs. visibility

W[data]=msg R[data]=msg R[flag]=1

W[flag]=1 R[data]=?

rf

addrrfdmb

I Weak memory can not simply be viewed as reordering of
instructions!

I The address dependency from the read to the write has
meaning (it constrains the coherence order of flag), but
doesn’t mean msg needs to be visible everywhere

75



Bonus!
Execution vs. visibility

W[data]=msg R[data]=msg R[flag]=1

W[flag]=1 R[data]=msg

rf

addrrfdmb

rf

I Weak memory can not simply be viewed as reordering of
instructions!

I The address dependency from the read to the write has
meaning (it constrains the coherence order of flag), but
doesn’t mean msg needs to be visible everywhere

75



Bonus!
Execution vs. visibility

W[data]=msg R[data]=msg R[flag]=1

W[flag]=1 R[data]=?

rf

addrrfaddr

I Weak memory can not simply be viewed as reordering of
instructions!

I The address dependency from the read to the write has
meaning (it constrains the coherence order of flag), but
doesn’t mean msg needs to be visible everywhere

75



Bonus!
Execution vs. visibility

W[data]=msg R[data]=msg R[flag]=1

W[flag]=1 R[data]=0

rf

addrrfaddr

I Weak memory can not simply be viewed as reordering of
instructions!

I The address dependency from the read to the write has
meaning (it constrains the coherence order of flag), but
doesn’t mean msg needs to be visible everywhere

75



Bonus!
Execution vs. visibility

W[data]=msg R[data]=msg R[flag]=1

W[flag]=1 R[data]=?

rf

xorfvo

I Visibility pushes out visibility to other threads transitively

I Execution doesn’t

76



Bonus!
Execution vs. visibility

W[data]=msg R[data]=msg R[flag]=1

W[flag]=1 R[data]=msg

rf

xorfvo

rf

I Visibility pushes out visibility to other threads transitively

I Execution doesn’t

76



Bonus!
Execution vs. visibility

W[data]=msg R[data]=msg R[flag]=1

W[flag]=1 R[data]=?

rf

xorfxo

I Visibility pushes out visibility to other threads transitively

I Execution doesn’t

76



Bonus!
Execution vs. visibility

W[data]=msg R[data]=msg R[flag]=1

W[flag]=1 R[data]=0

rf

xorfxo

I Visibility pushes out visibility to other threads transitively

I Execution doesn’t

76



Bonus!
Execution vs. visibility

R[x]=? R[y]=1

W[y]=1 W[x]=1

xo xorf

I There is a notion of the order things “execute in” - trace order

I Execution order, visibility order, reads from all must agree
with it

77



Bonus!
Execution vs. visibility

R[x]=? R[y]=1

W[y]=1 W[x]=1

xo xorfrf

I There is a notion of the order things “execute in” - trace order

I Execution order, visibility order, reads from all must agree
with it

77



void buf_enqueue(ring_buf *buf, unsigned char c) {

unsigned back = buf->back;

if (back != SZ + buf->front) { // not full

buf->buf[back % SZ] = c;

buf->back = back + 1;

}

}

int buf_dequeue(ring_buf *buf) {

int c = -1;

unsigned front = buf->front;

if (front != buf->back) { // not empty

c = buf->buf[front % SZ];

buf->front = front + 1;

}

return c;

}

echeck

write

xo

dcheck

eupdate

vo

read
rf

dupdate

xo

xo

rf

78



Dead store elimination

x = 1;

y = 1;

x = 2;
→ y = 1;

x = 2;

Another thread could observe y = 1 without observing x = 1

79



Bonus!
Non-atomics

I Atomic locations too strong to use for everything

I Each read reads from exactly one write

I All writes eventually reach all threads

I Followed C++ in having non-atomics with undefined
behavior for races

80



Bonus!
Sequential consistency

void sc_store(rmc::atomic<int> *p, int val) {

PEDGE(pre, store);

L(store, *p = val);

}

int sc_load(rmc::atomic<int> *p) {

PEDGE(pre, load);

XEDGE(load, post);

return L(load, *p);

}

I “SC atomics” could be implemented using pushes

I Stronger than we need, though

I Extra strength has real performance costs

I Added an efficient SC fragment

81



Advanced constraint specification
Cross-function constraints

foo *get_foo() {

return L(rptr, ptr);

}

int stuff() {

foo *p = get_foo();

return L(rdata, p->data);

}

I How to specify cross-function edges?

I These solutions rule out using data dependencies

I LGIVE and LTAKE allow returning values to be treated as a
pseudo-action

82



Advanced constraint specification
Cross-function constraints

foo *get_foo() {

return L(rptr, ptr);

}

int stuff() {

XEDGE(getfoo, rdata);

foo *p = L(getfoo, get_foo());

return L(rdata, p->data);

}

I How to specify cross-function edges?

I These solutions rule out using data dependencies

I LGIVE and LTAKE allow returning values to be treated as a
pseudo-action

82



Advanced constraint specification
Cross-function constraints

foo *get_foo() {

return L(rptr, ptr);

}

int stuff() {

XEDGE(pre, rdata);

foo *p = get_foo();

return L(rdata, p->data);

}

I How to specify cross-function edges?

I These solutions rule out using data dependencies

I LGIVE and LTAKE allow returning values to be treated as a
pseudo-action

82



Advanced constraint specification
Cross-function constraints

foo *get_foo() {

return L(rptr, ptr);

}

int stuff() {

XEDGE(pre, rdata);

foo *p = get_foo();

return L(rdata, p->data);

}

I How to specify cross-function edges?

I These solutions rule out using data dependencies

I LGIVE and LTAKE allow returning values to be treated as a
pseudo-action

82



Advanced constraint specification
Cross-function constraints

foo *get_foo() {

XEDGE_HERE(rptr, ret);

foo *p = L(rptr, ptr);

return LGIVE(ret, p);

}

int stuff() {

XEDGE_HERE(get, rdata);

foo *p = LTAKE(get, get_foo());

return L(rdata, p->data);

}

I How to specify cross-function edges?

I These solutions rule out using data dependencies

I LGIVE and LTAKE allow returning values to be treated as a
pseudo-action

82



Related Work

I Java memory model (Manson et al. 2005)

I C++ memory model (Boehm and Adve 2008, Batty et al.
2010)

I Sarkar, et al. 2011; POWER operational model
I Direct inspiration for our system

I Alglave et al. 2014; generic framework, “leapfrogging
writes”

I Jagadeesan et al. 2010; operational model for Java
I Our mechanism for speculation adapted from this

I Boehm and Demsky 2014; “out-of-thin-air” results worse
than we realized

83


	Thesis statement
	Low-level concurrent programming?

	Relaxed memory
	Modernity
	Approaches
	Constraints
	RMC

	Relaxed Memory Calculus (RMC)
	Ring buffer
	Pushes
	Advanced constraint specification
	Theory

	Compiler
	Practical?
	Implementation

	Evaluation
	Efficient?
	Usable?
	Bonus!
	Related Work


