
Peer-to-Peer Affine Commitment using Bitcoin

Karl Crary Michael J. Sullivan

Carnegie Mellon University

Abstract

The power of linear and affine logic lies in their ability to
model state change. However, in a trustless, peer-to-peer
setting, it is difficult to force principals to commit to state
changes. We show how to solve the peer-to-peer affine com-
mitment problem using a generalization of Bitcoin in which
transactions deal in types rather than numbers. This has ap-
plications to proof-carrying authorization and mechanically
executable contracts. Importantly, our system can be—and
is—implemented on top of the existing Bitcoin network, so
there is no need to recruit computing power to a new pro-
tocol.

1 Introduction

The power of linear and affine logic [9] lies in their ability
to model state change. Linear and affine assumptions are
treated as scarce resources: a linear assumption must be
consumed exactly once, while an affine assumption must be
consumed at most once. Thus, an action that consumes a
linear or affine resource represents a change in the state of
the world, from a state containing the resource to a new
state containing whatever was produced in its stead.

For example, the rule:

bread⊗ ham(ham sandwich

models the state change that takes place when bread and
ham are combined to produce a ham sandwich. The bread
and ham are gone, replaced by the sandwich. Less whimsi-
cally, the rule:

∀i. counter(i)(counter(i+ 1)

models the state change that takes place when a counter is
incremented. After the state change, the counter no longer
contains i, it contains only i+ 1.

One important application of linear/affine logic, of par-
ticular interest to us here, is in proof-carrying authoriza-
tion [1, 3, 7], wherein linearity/affinity allows the creation
of single-use authorization credentials.

Proof-carrying authorization Proof-carrying authorization
is a logic based on an affirmation modality 〈K〉P , which is
read “the principal K says P”. Of interest are propositions
like 〈Alice〉 may-read(Bob, file). If Bob is able to prove the
proposition, and Alice owns file, then Bob is authorized to
read file.

Alice may affirm any statement of the form 〈Alice〉P
that she chooses. She may affirm 〈Alice〉 may-read(Ki,
file) for various Ki, thereby achieving the same functional-

ity as a conventional access-control list. Or, she may affirm
a more general policy, such as:

〈Alice〉∀K. 〈Registrar〉 in-Alice’s-class(K)
⊃ may-read(K, file)

to say that anyone in Alice’s class (according to the reg-
istrar) may read the file. Authorization then becomes a
matter of logical inference.

With a persistent1 statement 〈Alice〉may-write(Bob,
homework), Bob can turn in his homework as many times
as he likes. But perhaps Alice wants to grant Bob that priv-
ilege only once. She can do so by affirming the proposition
as a linear or affine resource. That way the authorization
resource is consumed when Bob uses it, thereby preventing
him from using it again.

In a closed setting (that is, in a system made up of one
or more trusted sites), proof-carrying authorization is just
a matter of proof checking. The system keeps track of all
known propositions. It will not add assumptions unless they
are either proven or affirmed by the appropriate party, and
it deletes linear/affine resources when they are consumed.

In an open setting the problem is more complicated, at
least if we wish to be able to move authorizations between
sites that do not trust each other. The proofs themselves
are trust-free; they can be moved and checked anywhere
without trusting anyone. Persistent affirmations can also
be made mobile by backing them with digital signatures.
Linear/affine resources, however, pose a problem: if one is
passed through an untrusted site, there is no way to know
that it was not copied.

Commitment The essential requirement is a mechanism by
which principals can globally and irreversibly2 commit to a
state change. The problem with copying linear/affine cre-
dentials is it allows a principal to perform a state change
while retaining access to the old state, thereby effectively
allowing him to undo the state change by using the copy.

One way to solve the commitment problem is using a
trusted third-party. A trusted third-party can hold all the
linear/affine credentials and thus be the keeper of all the
state. Whenever Bob wishes to exercise a linear/affine cre-
dential, the site on which he does it contacts the keeper,

1We use the word “persistent” for normal (non-linear, non-affine)
assumptions that may be used many times or not at all.

2To be sure, linear and affine formalisms often contain rules that
can invert the state transitions induced by other rules. For example,
an uneaten ham sandwich can be dismantled into bread and ham.
But that would be an inverse state change, not a per se reversion to
the previous state. An analogous distinction is between deleting a
keystroke in a text editor using the backspace key, versus using the
undo key.

which verifies to Bob’s site that Bob possesses the creden-
tial and then deletes or transforms it as appropriate.

A trusted third-party removes the need for all sites to
trust each other, but it still requires at least one agent to
gain the trust of everyone. It also creates a single point of
failure: the entire system grinds to a halt if the keeper goes
down, and the entire system is compromised if the keeper is
compromised.

Thus, we prefer a peer-to-peer solution to commitment,
one that is trust-free and fully distributed. Linear/affine
credentials should be held collectively by the network, no site
should need to trust any other site, and no single failure (nor
even a moderate number of failures) should compromise the
system or bring it to a halt. For technical and philosophical
reasons (Section 4), we formulate our solution for affine logic,
not linear logic.

Bitcoin A similar need for peer-to-peer commitment arises
in crypto-currencies such as Bitcoin [16] and its cousins. Im-
plementing a crypto-currency is almost easy: the issuer can
mint coins by digitally signing certificates, and the current
owner of a coin can spend it by signing it over to someone
else. The problem with the simple scheme is it does not pre-
vent the owner of a coin from spending it multiple times. For
a crypto-currency to work, it needs a way for participants
to commit to spending a coin.

Bitcoin implements commitment by maintaining a global
ledger containing every Bitcoin transaction. When someone
wishes to spend a coin, he enters the transaction into the
ledger, and the payee waits to dispense goods or services
until he sees the payment appear in the ledger.

For our purposes, the exact mechanism by which Bitcoin
maintains its ledger—called the blockchain—is not crucial,
but it is helpful to understand the full picture:

1. The blockchain consists of a set of blocks, each one
of which aggregates a number of transactions. Each
block contains a cryptographic hash of the previous
block [10], thereby turning the set into a tree.

2. In order for the blockchain to provide a commitment
mechanism, we need it to be list, not a tree. Other-
wise, a state change could be reversed by hopping to
an alternate branch of the tree. Therein lies the main
contribution of Bitcoin.

3. Parties are incentivized to create new blocks (called
“mining”, by analogy to miners of precious metals) by
the privilege to generate new bitcoins and collect trans-
action fees. However, the Bitcoin history is defined to
be longest branch in the tree, so there is no incentive
to work on an inferior branch.

4. In order to create a new block, its creator must solve a
problem3 that is expensive to solve, but easy to verify.
This makes the time to create a block much greater
than the time needed to disseminate a block and check
its correctness. Thus, when a new block is announced,
a miner’s incentive is always to restart work on a suc-
cessor to the new block, rather than wasting effort on
what has become an inferior branch.

3In particular, the block’s cryptographic hash, viewed as an inte-
ger, must be less than a given target. The miner can change the hash
by altering a nonce, but no strategy for hitting the target better than
brute force is known.

5. In order to reverse a transaction, an attacker would
need to create a new block without it, and then out-
pace the rest of the network to create enough subse-
quent blocks to make his branch the longest. As new
blocks follow a transaction’s block, his likelihood of suc-
cess drops exponentially—assuming that most of the
network’s computational power is controlled by honest
participants.

6. Thus, once a transaction has several subsequent blocks
(usually taken as five), it may be considered irre-
versible. We will say such a transaction is confirmed.
This takes roughly an hour.4

From a type-theoretic perspective, what Bitcoin provides
is a commitment mechanism for a single homogeneous re-
source (currency). In this paper we show how to general-
ize Bitcoin from a currency into a general-purpose affine-
commitment mechanism. We also present an implementa-
tion of our system, called Typecoin, that runs on top of the
existing Bitcoin architecture. Thus, Typecoin already has
all the commitment power of Bitcoin, without any need to
recruit participants to a new protocol.

2 Transactions

A Bitcoin transaction consists of a set of inputs and a set
of outputs. Each input and output has a bitcoin amount,
and each input gives the identifier of a specific transaction-
output that it spends:

I1 : a1
...

Im : am

 in−→ out−→

b1
...

bn

Additionally (not shown), each output lists a public key
needed to spend that output, and each input provides a
digital signature. In order for a transaction to be valid (a
prerequisite for inclusion in the blockchain):

1. The sum of the outputs must equal the sum of the
inputs (minus a transaction fee that we will neglect).

2. Each input amount must be equal to the output
amount it identifies.

3. All the inputs must identify distinct unspent outputs.

4. All of the inputs’ digital signatures must be valid sig-
natures of the full transaction for the public key of the
output being spent.

The first condition is the one we wish to generalize. In-
stead of making each “amount” a number, we make it a
type. We also include a proof term M in the transaction.

I1 : A1

...

Im : Am

 in−→M
out−→

B1

...

Bn

Then, instead of requiring the inputs and outputs to
agree arithmetically:

a1 + · · ·+ am = b1 + · · ·+ bn
4Bitcoin dynamically adjusts the mining difficulty so that new

blocks are always generated approximately every ten minutes, even
as the computational power of the network changes.

2

we require them to agree type-theoretically:5

`M : (A1 ⊗ · · · ⊗Am)((B1 ⊗ · · · ⊗Bn)

Thus, if Alice has the private key to unlock a transaction
output having type A, she can either pass it along to Bob,
or (if she can prove A(B) convert it to a B, or both. But
once she does any of these, and the transaction is confirmed,
her action is irreversible. The transaction output she used
is now spent, and cannot be spent again.

Usage Observe that we can specialize Typecoin back to a
crypto-currency by dealing with a single homogeneous re-
source type. For example, the arithmetic equation 2 + 2 =
1+3 becomes the affine implication ((coin⊗coin)⊗(coin⊗
coin))((coin⊗ (coin⊗coin⊗coin)). For large amounts
this quickly becomes unwieldy, so a more practical encoding
uses an indexed type coin(n), with rules coin(m + n) (
(coin(m)⊗ coin(n)) and vice versa.

However, we can also use Typecoin to express more
complex systems. Returning to our proof-carrying autho-
rization example from earlier, suppose Alice wants to give
Bob a single-use credential to turn in his homework. Alice
does not sign a persistent statement 〈Alice〉may-write(Bob,
homework), because that would allow Bob to hand in his
homework as many times as he chooses. Instead, Alice cre-
ates a transaction that outputs that same proposition as an
affine resource.

Alice may generate 〈Alice〉P for any P , from nothing,
by signing the transaction that it will be created in. (Sign-
ing the transaction prevents an attacker from replaying the
affine resource as part of a different transaction. An attacker
cannot replay the entire transaction either, because every
transaction has at least one input. In a replayed transac-
tion that input would already be spent, so the replay would
be invalid.)

Alice directs the output of her transaction to Bob. (More
precisely, she locks the output using Bob’s public key.) Bob
could then pass it on to someone else, but he has no reason
to do so since may-write(Bob, x) is worthless to anyone but
Bob.

When Bob is ready to turn in his homework, he must
show to the file system that he is expending his writing cre-
dential for this particular write. One simple protocol is as
follows: Bob submits the write to the file system, which
replies with a nonce n. Bob then submits a Typecoin trans-
action that alters his credential to include the nonce:

may-write(Bob, homework)
(may-write-this(Bob, homework, n)

Once the filesystem sees the nonce in a confirmed trans-
action, it recognizes that Bob has committed to the write,
so it performs it.

In other circumstances, it might make sense for a re-
source to be transferable. Consider:

〈ACM〉∀K. may-read(K, TOPLAS)

This credential can be used by anyone, by filling in the
principal K. The holder of such a credential could exercise

5In linear/affine logic, A ⊗ B is “simultaneous conjunction,” rep-
resenting the combination of A and B; and A (B is linear/affine
implication, representing a function that consumes an A to produce
a B.

it by instantiating K with himself, or he could transfer it to
someone else, possibly in exchange for other affine resources.

The connectives of affine logic create other interesting
possibilities. For example, external choice allows the re-
source’s holder to choose between multiple options, as in:

〈ACM〉∀K. (may-read(K, TOPLAS) & may-read(K, TOCL))

3 Implementation

We implement Typecoin by overlaying Typecoin transac-
tions atop Bitcoin transactions. Thus, each input and out-
put has a bitcoin amount and a type:

I1 : a1/A1

...

Im : am/Am

 in−→M
out−→

b1/B1

...

bn/Bn

The Bitcoin protocol checks that each input is unspent,
and the digital signatures are valid (i.e., the third and fourth
conditions from Section 2). The Bitcoin protocol also checks
that the bitcoin amounts agree (i.e., the first and second
conditions). Naturally, it does not check that the types
agree, as it knows nothing about them.

Thus, every transaction-output (“txout” in Bitcoin
nomenclature) carries both a bitcoin amount and a type.
Txouts that do not arise from valid Typecoin transactions
are taken to have the trivial type 1. In a typical Typecoin
transaction, all the bitcoin amounts will be very small.

The full Typecoin transaction (including inputs, out-
puts, a proof term, and other material) is cryptographically
hashed and embedded into its corresponding Bitcoin trans-
action. When combined with Bitcoin’s requirement that no
txout be spent more than once, this provides a commitment
mechanism: An affine resource represented by a txout can
be spent only once, and the manner in which it was spent is
irreversibly fixed by publishing its hash.

As noted, Bitcoin cannot be induced to type-check Type-
coin transactions. Indeed, even if it could, it would be wrong
for the network at large to have to assume that cost, and it
would open the door to a denial-of-service attack.

Instead, type-checking is performed by the interested
parties, outside the Bitcoin mechanism. When Bob tries to
turn in his homework, he identifies to the filesystem a txout
(say I) that he claims has the type may-write-this(Bob,
homework, n). To substantiate his claim, he provides the
Typecoin transaction TI that outputs I, as well as T, the
set of all Typecoin transactions upstream of TI .

The type-checker then checks that I’s type is as claimed,
and checks, for each T ∈ T, that:

1. The hash of T agrees with the hash embedded in its
corresponding Bitcoin transaction.

2. T type-checks.

3. The type of each input of T agrees with the type of the
output it spends.

Thus, the affine invariant (resources are spent at most
once) is enforced in two different ways: within transactions
by the Typecoin type-checker, and between transactions by
the Bitcoin invariant that no txout is spent multiple times.

Our reference implementation of Typecoin is written in
Standard ML, and includes a new Standard ML implemen-
tation of Bitcoin.

3

3.1 Typecoin and Bitcoins

Since non-Typecoin txouts are taken to have type 1, we can
inject extra bitcoins into a transaction by adding an extra
input of type 1. Such trivial inputs are type-theoretically
irrelevant, but they can still be useful. For example, a trans-
action might operate at both levels at once, in order to ex-
change an affine resource for bitcoins. Trivial inputs can
also be used to bring a transaction into balance, or to pay
the Bitcoin transaction fee.

Conversely, nothing prevents the owner of a txout from
spending it in a non-Typecoin transaction. The owner is
then, in essence, cracking a resource open to recover the
bitcoins inside. This will be a common cleanup operation.
For example, Bob has no more use for his nonce-infused
credential once he has turned in his homework, so he has
every reason to turn it back into bitcoins.

3.2 Batch Mode

A significant weakness of Typecoin is its latency. A Bit-
coin transaction takes about an hour to be confirmed, which
makes it impractical for many uses. Certainly we could not
base a filesystem on a mechanism that requires an hour to
deliver an access permission.

A similar issue stems from Bitcoin’s transaction fees. A
typical transaction fee is 0.0005 bitcoin, which, as of mid-
April 2015, is about 11¢ US. This is a small amount in
absolute terms, but in any kind of automated application it
would add up quickly.

To resolve these problems, Typecoin can be operated in
batch mode. In batch mode, a trusted third-party main-
tains a credential server that holds Typecoin resources on
behalf of other principals. When principals wish to con-
duct a batch-mode transaction, they notify the server, which
records the transaction but does not submit it to the net-
work.

A principal may also withdraw a resource from the
server—sending it to his own public key—and only then
does the server submit a transaction to the network. The
server batches together all the transactions upstream of the
resource in question, routing that resource to its owner’s key
and the rest back to its own key. (This will likely be a large
Typecoin transaction, but the Bitcoin network sees only its
hash.) Conversely, a principal can deposit a resource at the
server by sending it to the server’s public key.

When an interested party (such as the fileserver) wants
to check the validity of a claimed resource, she queries the
batch-mode server, which answers based on its own records,
if it holds the resource, or on the blockchain if it does not.

Note that batch mode does not compromise the trust-
lessness of the network. No one ever needs to use a batch-
mode server, batch mode only exploits trust relationships
that happen to exist already. For instance, universities or
companies might choose to operate batch-mode servers for
their respective institutions. Indeed, the Typecoin client it-
self can be viewed as a very small batch-mode server, trusted
by only one person.

3.3 Metadata in Bitcoin

One messy detail of the implementation pertains to the
Typecoin transaction hash that must be embedded into the
Bitcoin transaction. Unfortunately, Bitcoin transactions do
not have a metadata field, so we have to be creative.

One easy way to introduce metadata into a Bitcoin trans-
action would be to add a bogus output whose “public key”
is not actually a public key at all, but the desired metadata.
A bitcoin amount would have to be sent to the non-key, and
that amount would be unrecoverable, but the amount could
be kept very small.

However, that strategy cannot be considered, because
it would have a severe consequence on Bitcoin itself. Any
Bitcoin node that verifies transactions’ validity must be able
to tell whether a particular txout has been spent already,
and this requires maintaining a table of all unspent txouts.
Unrecoverable txouts mean permanent deadweight in the
table.

At the time of this writing, the unspent-txout table is
about one-quarter gigabyte (as the most popular Bitcoin
implementation represents it). This already poses a long-
term challenge for Bitcoin’s scalability and adding an un-
collectable entry for each Typecoin transaction would only
exacerbate the problem.

Another potential strategy is to use Bitcoin’s scripting
language [4], which allows txouts to define unlocking rules
more interesting than the typical signed-by-a-given-key rule.
The scripting language is a stack machine reminiscent of
Forth [18], and provides ample opportunity to embed extra-
neous data.

Alas, this does not work either. For various reasons,
particularly concerns that novel scripts could be used for
denial-of-service attacks, the Bitcoin network makes most
scripts unavailable for normal use. A very small number of
script schemas are deemed to be standard, and most Bitcoin
nodes will not forward transactions that use non-standard
scripts. Thus, while non-standard scripts are legal when
they appear in blocks, participants cannot get non-standard
scripts into a block unless they control a miner.

To embed metadata, our implementation uses a standard
script schema called “m-of-n” [5]. In an m-of-n script, the
output specifies n public keys, and the input must provide
signatures for m of them. This is intended, in its 2-of-3 form,
for two-party escrow contracts, wherein the signatures are
those of the two parties and an escrow agent. When no
dispute arises, the parties unlock the payment together, but
when a dispute does arise, the escrow agent sides with one
party or the other.

We use m-of-n scripts in their 1-of-2 form. One of the
public keys is the actual public key, the other “public key” is
the desired metadata. Since the output can be unlocked by
satisfying just one of the two keys (the real one), the output
can be spent, and its entry in the unspent-txout table can
be garbage-collected.

4 The Typecoin Logic

The syntax of the Typecoin logic is given in Figure 1. The
two main classes of interest are types, inhabited by index
terms, and propositions, inhabited by proof terms.

Propositions are the main topic of discourse. We sup-
port the connectives of dual intuitionistic linear logic [2]
except > (which is meaningless in affine logic), universal
and existential quantification, an affirmation modality [8],
and one other form (receipts) relevant to building transac-
tions. As we have seen already, the logic is dependently
typed. Atomic propositions have the form cm1 · · ·mi, for
index terms m1, . . . ,mi.

4

p
ri

m
it

iv
es number n ::= 0 | 1 | 2 | · · ·

principal K ::= · · ·
transaction id txid ::= · · ·
digital sig sig ::= · · ·

co
n

st
s local constant ` ::= · · ·

reference r ::= this | txid
global constant c ::= r.`

L
F

kind k ::= type | prop | Πu:τ.k
type family τ ::= c | τ m | Πu:τ.τ | principal | nat
index term m ::= u | c | λu:τ.m | mm | K | n

p
ro

po
si

ti
o

n
s proposition A ::= τ

| A(A | A&A | A⊗A
| A⊕A | 0 | 1 | !A
| ∀u:τ.A | ∃u:τ.A
| 〈m〉A | receipt(A/m� m)

p
ro

o
f

te
rm

s proof term M ::= x | c
| . . . standard affine logic . . .
| sayreturnm(M)
| saybind x←M inM
| assert(K,A, sig)
| assert!(K,A, sig)

ba
se

s sort s ::= k | τ | A
basis Σ ::= ε | Σ, c : s

tr
a

n
sa

ct
io

n
s input ι ::= txid .n� A/n

inputs ~ι ::= ι, . . . , ι
output ω ::= A/n� K
outputs ~ω ::= ω, . . . , ω
transaction T ::= (Σ, A,~ι, ~ω,M)

Figure 1: Syntax

For maximum generality, we follow Simmons [20] and
use LF [11] for our index terms. Using LF, one can define
whatever language of discourse one requires. Because of the
important role played in Typecoin by affirmation and digital
signatures, it is convenient to isolate two particular LF types
(principal and nat) for special treatment elsewhere. The type
principal is inhabited by principal literals K, which we take
to be cryptographic hashes of public keys,6 and the type
nat is inhabited by natural numbers. Note that since we
identify principals with public keys, Typecoin is open-ended
with respect to the addition of new principals.

Since the form of atomic propositions is identical to the
form of atomic types, it is convenient for us to view atomic
propositions as type families whose kind is prop rather than
type. Since we omit family-level lambda abstractions (fol-
lowing Harper and Pfenning [12]), it is easy to show that
the addition of a new kind does not affect the existing LF
metatheory.

Proof Terms Most of the proof terms are the standard
proof terms of affine logic. In addition, there are four forms
for affirmation. Affirmation forms a monad, with unit sayre-
turn and bind saybind. The unit expresses that every princi-
pal affirms everything provable. The bind allows us, given a

6We use hashes, rather than raw keys, because this is standard
practice in Bitcoin.

proof of 〈K〉A, to assume A, but only to prove a proposition
of the form 〈K〉B.

In addition to the monad forms, there are two primi-
tive affirmations that allow K to affirm any statement he
desires. Both assert(K,A, sig) and assert!(K,A, sig) prove
the proposition 〈K〉A; they differ in what the digital signa-
ture sig signs. In the former, sig signs essentially the entire
transaction in which it appears;7 in the latter, sig signs only
the proposition A. The former is intended for affine affirma-
tions (e.g., 〈Alice〉may-write(Bob, homework)), so it cannot
be lifted out of its transaction. The latter is intended for
persistent affirmations, so it can.

Receipts Suppose ACM wants to grant access to read
TOPLAS in exchange for a coupon. Then ACM can issue
the offer:

!〈ACM〉(coupon(∀K. may-read(K, TOPLAS))

When the reader exercises this offer, the coupon is de-
stroyed and the reader gains access to TOPLAS. But sup-
pose that the coupon is valuable for some reason, so ACM
wishes to recover it rather than destroy it.

Receipts record the fact that a payment is being made
to some principal, turning that fact into a resource that can
be demanded as part of an offer. By demanding a receipt, a
principal requires that the corresponding payment is made.
For each of the transaction’s outputs ω, the transaction gets
receipt(ω) as an additional input.

For example, if ACM wishes to recover the coupon, it
would say:

!〈ACM〉 (receipt(coupon� ACM)
(∀K. may-read(K, TOPLAS))

In order to read TOPLAS, the customer must obtain a
receipt(coupon� ACM), and to do so the customer must send
the coupon to ACM.

The general form of this is receipt(A � K), indicating
that a resource of type A has been sent to principal K.
Another form, receipt(n � K) indicates that n bitcoins
have been sent to K. These forms can be combined into
receipt(A/n� K), to indicate a resource of type A and also
n bitcoins have been sent to K.

Bases A basis is a set of constant declarations. Each con-
stant represents a new type family, index term, or proof
term. A transaction uses its local basis to define concepts or
rules relevant to its transaction. (In the logical frameworks
literature, a basis is usually called a signature, but we wish
to avoid the unfortunate terminological collision with digital
signatures.) The global basis is the local basis appended to
the bases of all previous transactions.

Every constant is relative to a reference to the transac-
tion in which the constant originated. Since a transaction’s
identifier is not known in advance, constants local to the
transaction are identified using a special local reference, this.
Once the transaction enters the blockchain, all its declara-
tions are added to the global basis, with this replaced by the
transaction’s identifier.

Naturally, a transaction’s local basis may only declare lo-
cal constants (that is, constants of the form this.`). Further-
more, each constant’s sort (i.e., kind, type, or proposition)

7The proof term need not be signed, and indeed cannot be, since
it contains the signatures.

5

must be restricted so that no transaction can make declara-
tions that change the meanings of non-local constants.8 This
check, called the freshness check, requires that any restricted
form must appear on the left-hand-side of a lolli or universal
quantifier. Thus, restricted forms can be consumed but not
produced. Restricted forms include non-local constants, the
proposition 0, affirmations, and receipts.

Transactions A transaction consists of five components: its
local basis, a proposition called its affine grant, inputs, out-
puts, and a proof term. The local basis makes persistent
definitions that any subsequent transaction may reference.
The affine grant creates affine resources for use within the
transaction. Like the local basis, it must pass the freshness
check.

Each input txid .n� A/n specifies that resources typed
A and n bitcoins are taken in from the nth output of txid.
(The digital signature used to unlock the input is not rep-
resented in the formalism.) Each output A/n specifies that
resources typed A and n bitcoins are sent to the principal K.

Finally, the proof term M must prove that the transac-
tion balances. It shows that the outputs can be produced us-
ing the affine grant, the inputs, and receipts for the outputs.
More precisely, if A tensors the inputs together, B tensors
the outputs together, R tensors the receipts together, C is
the affine grant, and Σ is the local basis, then:

Σglobal,Σ `M : (C ⊗A⊗R)(B

Affinity We designed Typecoin to implement affine com-
mitment, rather than linear commitment, for several rea-
sons. We could have based the system on linear logic, but
it still would have admitted several ways in which resources
could be destroyed. The easiest is to declare constants with
type A (1 in the local basis. This is legal, since 1 is not
a restricted form. (Even if it were, there would be several
other slightly-less-easy ways to destroy a resource.)

Moreover, even if the logic were formulated in some dif-
ferent fashion that made it impossible to destroy a resource
per se, it would still be possible to make a resource perma-
nently unusable by storing it in a txout and discarding its
private key.

Since it seems awkward to be affine only through a
clumsy idiom, we have elected to embrace affinity and have
formulated our system to admit weakening.

5 Expiration and Revocation

An important financial contract is the option, which allows
the holder to purchase a commodity at a given price, or
not, until the option expires. As we have seen, much of this
contract is already expressible:

receipt(payment� Alice)(commodity

However, this fails to express that the offer expires at
some given time. To account for expiration, we add a new
form of proposition, as shown in Figure 2. The conditional
if(ϕ,A) can be converted to A, provided the condition ϕ
holds.

8Even if the other transaction was authored by the same principal,
others might have come to rely on its definitions. For example, the
other transaction might define a contract.

condition ϕ ::= before(m) | spent(txid .n)
| true | ϕ ∧ ϕ | ¬ϕ

proposition A ::= · · · | if(ϕ,A)
proof term M ::= · · ·

| ifreturnϕ(M)
| ifbind x←M inM
| ifweakenϕ(M)
| if/say(M)

Figure 2: Conditionals

By choosing the condition ϕ to be before(t), we can ex-
press an expiring option:

receipt(payment� Alice)(if(before(t), commodity)

Until time t, the holder can pay Alice to obtain the condi-
tional, then discharge the conditional to obtain the commod-
ity. After time t, the conditional if(before(t), commodity)
becomes worthless, so the option becomes worthless.

Note that it is important that the condition appear be-
neath the lolli, not above it. In the incorrect alternative:

if(before(t), receipt(payment� Alice)(commodity)

the holder can discharge the condition before t, and then
hold a non-expiring option indefinitely.

Conditions Conditions are built from true, conjunction,
negation, and two primitive conditions. As we have seen,
the primitive condition before(t) expresses expiration. A
second primitive condition, spent(txid .n), expresses that the
nth output of transaction txid has been spent.

The latter is useful in negated form to express revocation.
If Alice controls the txout I, she can make a revocable offer
by conditioning it on I being unspent:

receipt(payment� Alice)(if(¬spent(I), commodity)

Alice can revoke the offer at any time (with about fifteen
minutes average latency), simply by spending I.

Other conditions could also be added. The essential
property of all conditions ϕ is that there be unambiguous
evidence of the truth or falsity of ϕ for any particular trans-
action in the blockchain. Each block includes a timestamp
that can be used to determine the transaction’s time. To
show that a txout is spent, one can point to an earlier trans-
action that spent it. To show a txout is unspent, one can
point out a later transaction that spent it, or observe that
it is still unspent. (Recall that Bitcoin maintains a table of
all unspent txouts.)

The conditional monad As we have seen, the propositions
A (if(ϕ,B) and if(ϕ,A (B) must not be equivalent.
This precludes interpreting if(ϕ,A) as something like ϕ (
A. In fact, conditionals form a monad. We may view if(ϕ,A)
as an effectful operation: it produces A only after checking
the current state of the world to ensure that ϕ holds.

Thus we manipulate conditionals using the unit ifreturnϕ
(which allows any A to be weakened to if(ϕ,A)) and bind
ifbind. We may also weaken if(ϕ′, A) to if(ϕ,A) using
ifweakenϕ, provided ϕ implies ϕ′.

Since we have two monads, we include a commutation op-
eration if/say, which takes 〈K〉if(ϕ,A) to if(ϕ, 〈K〉A). The
opposite direction (which might be called say/if) is seman-
tically dubious and we do not include it.

6

Discharge The trickiest aspect of conditionals is the means
by which they are discharged. At first glance, it seems ap-
pealing to add a primitive discharge : if(ϕ,A) (A that
may be used only in transactions in which ϕ holds. But
this would be a misstep similar to interpreting if(ϕ,A) as
ϕ(A.

Suppose M : A (if(ϕ,B). Then, using discharge, we
could defeat the conditional:

λx:A.discharge(M x) : A(B

We could similarly defeat a conditional that appeared
under additive conjunction (i.e., &, which might be used
to require that a choice be made by a particular time) or
an exponential (i.e., !). This illustrates that conditionals
should be discharged only at the top level.

Therefore, we have no explicit discharge operation at all.
Instead, discharge is done implicitly at the top-level. Trans-
actions use the monad forms to build their outputs in condi-
tional form. (If multiple conditions are in play, transactions
use weakening to move to the conditions’ conjunction.) The
transaction’s top-level proof term then must have the type:

(C ⊗A⊗R)(if(ϕ,B)

for some ϕ, and the transaction is valid only if ϕ holds.
Since conditions are volatile properties, batch-mode

servers must write transactions discharging anything other
than true through to the blockchain.

Fallback transactions Using conditionals can be risky. If a
transaction’s top-level condition is false when it goes into the
blockchain, the transaction is invalid. However, the trans-
action’s inputs are already spent (Bitcoin doesn’t know if
the transaction is valid or not) and cannot be recovered.
Thus, an invalid transaction spoils its inputs, which might
be valuable.

The delay in getting a transaction into the blockchain
is unpredictable, so even if a transaction is valid when sub-
mitted, it might still be invalid by the time it enters the
blockchain. Moreover, revocations can take place at any
time without warning, so any transaction that discharges a
revocable resource could turn out to be invalid.

To address this problem, Typecoin allows users to submit
a list of fallback transactions. If the primary transaction
turns out to be invalid, the first valid fallback transaction is
used instead. A typical fallback transaction simply returns
all inputs to their original owners, which keeps the inputs
from being destroyed but otherwise accomplishes nothing.

All the transactions in the list must map onto the same
Bitcoin transaction. This means that they must agree on
the input txouts, the output principals, and the input and
output Bitcoin amounts.

The fact that all transactions in the list must agree on
the output Bitcoin amounts is unfortunate, because it means
that a fallback transaction cannot recover payment made on
an expired or revoked contract. In cases where the payment
is substantial, the likelihood of expiration/revocation is non-
negligible, and the payee cannot be trusted to issue a refund,
the payer ought to use escrow (Section 7).

6 Example

We present a basis that gives defines a currency that we
will call “newcoins” as a concrete demonstration of the sys-
tem. before. The basis defines a coin proposition, indexed

by natural numbers, and rules that allow the merging and
splitting of coins.

coin : nat→ prop

merge : ∀N,M,P : nat. (∃x:plusNMP. 1)(
coinN ⊗ coinM (coinP

split : ∀N,M,P : nat. (∃x:plusNMP. 1)(
coinP (coinN ⊗ coinM

This example depends on the existence of LF type con-
stant plus : nat→ nat→ nat→ type, where plusN M P is
the type of proofs that N +M = P .

The proposition (∃x:plusNMP. 1) makes use of a some-
what unusual idiom: it has no interesting resource content,
but serves to require that plusNMP is inhabited.

The remaining major question about the coin example
is how to introduce money into circulation. The principal
(which we will refer to as “the bank”) who publishes the
basis defining coins can also define how to create new coins.
One powerful tool for this is the affine grant. The bank, for
example, could make the money supply fixed, by creating
a coin 1000000000 or the like, and giving it to themselves.
This will give the bank a large amount of money to dis-
tribute, but it will not be able to print new money.

Alternatively, the bank could include the resource9

!(∀n:nat.coinn) in the affine grant and hang on to it, thus
giving itself the equivalent of a printing press. (More whim-
sically, the bank could simply give itself !coin 1.) Creating
persistent resources in the affine grant is an important idiom
for modeling things that are unrestricted in how much they
can be used but are restricted in who they can be used by.
If ∀n:nat.coinn instead appeared in the basis, then anyone
could print arbitrary amounts of money!

Another approach is to empower some specific principal
to trigger the action with affine affirmations:

print : nat→ prop

issue : ∀N :number. 〈Bank〉(printN)(coinN

Now the bank no longer needs to thread a private print-
ing press through all of its transactions: it simply signs an
affine affirmation and then immediately uses it to trigger the
issue rule. The bank also now has additional flexibility to
sign new rules for proving 〈Bank〉(printN) resources, which
we explore in the next section.

6.1 Further Development

Using receipts and conditionals, we can extend the newcoin
example in several interesting ways. Using time-based con-
ditionals, we can encode an independent central banker who
is appointed for a set term:10

appoint : principal→ time→ prop

is banker : principal→ time→ prop

confirm : ∀K:principal. ∀t:time.
〈President〉(appointK t)(is bankerK t

9The proposition !A is the linear/affine exponential, representing
as many copies of A as desired.

10The type time is actually just nat; we give it a different name for
its use in timestamps in the interest of clarity.

7

We represent the banker with a proposition is bankerK t,
which states that principal K is the banker until time t.
Here, a banker is appointed simply through the choice of a
principal called President, although one can imagine a more
complicated system requiring confirmation from a number
of other principals.

print : nat→ prop

issue : ∀K:principal.∀t:time.∀N :nat.
is bankerK t
(〈K〉(printN)
(if(before(t), coinN)

Here, we use conditional propositions in order to allow the
banker to print money, but only during the banker’s term.
An affirmation from the banker ordering the creation of N
newcoins can be converted to N newcoins, but only if it is
extracted before the banker’s term expires.

The combination of receipts, affirmations, and conditions
give the banker a great deal of flexibility in how to issue
newcoins. For example, the banker may want to introduce
newcoins into the market by purchasing bitcoins with them.
One way for the bank to do this is to simply have traditional
transactions with people wishing to buy newcoins: the cus-
tomer sends bitcoins, the bank sends back newcoins. We
can do better, however, and almost fully represent the offer
in our logic.

To do this, the banker can sign a proposition that allows
you to turn a receipt proving that you have sentNbtc bitcoins
to some bank-controlled addressD into an order to printNnc

newcoins. So that the banker can cancel the offer and adjust
prices in response to market conditions, it makes the order
conditional on a txout R being unspent.

〈Banker〉(receipt(Nbtc � D)
(if(¬spent(R), printNnc))

By publishing a signature of this proposition, the banker
enables users to incorporate the proposition into their own
proof terms.

If we have a receipt bound to r, the affirmation bound
to p, and a proof of is banker bankerT bound to b, we can
produce coinNnc with the proof term in Figure 3.

As usual, let is a derived form built from lambda and
application. The most subtle part of this example is
the handling of the various monadic constructs. By us-
ing the order that the banker published, we can derive
〈Banker〉if(¬spent(R), printNnc) and must use if/say to
commute that to if(¬spent(R), 〈Banker〉(printNnc)). We
use ifweaken twice in order to merge together the separate
constraints.

Observe that newcoin buyers make Bitcoin payments
based on a revocable offer. If the bank cannot be trusted to
make refunds to principals who attempt to buy just as the
offer is revoked, those buyers could lose the purchase price.
We address this problem in the next section.

7 Open Transactions and Type-Checking Escrow

Suppose Alice wishes to award a prize to the first person to
solve a puzzle. Simply announcing ! (solution (prize)
won’t do, because that would award the prize to everyone
who solves the puzzle. The competition can easily be done
on a batch-mode server, but that would require all partici-
pants to trust the server.

Half of the solution is to use an open transaction, which is
a transaction with holes that anyone can fill in. Alice signs
and issues an open transaction that takes in solution and
prize and outputs them. On the input side, she specifies
her txout carrying the prize, but she leaves blank the txout
carrying the solution. On the output side she sends the
solution to her own public key, but leaves blank the public
key receiving the prize. Bob then can fill in the two blanks
to receive the prize. Observe that the transaction is only
valid if his txout really does have the solution and her txout
is still unspent.

By themselves, open transactions don’t solve the prob-
lem: Nothing keeps Alice from reneging and taking the prize
herself. Worse, we can’t implement open transactions on
Bitcoin, because Bitcoin does not (and ought not) know
anything about Typecoin type checking.

The second half of the solution is to use a type-checking
escrow agent. Alice sends her prize to a public key controlled
by Charlie, an escrow agent. She also issues an open trans-
action, as above, except that the prize comes from Charlie’s
txout, not hers. Charlie’s policy is to sign any instance of
the transaction that type checks. In order to claim the prize,
Bob fills in the transaction as before, and then sends it to
Charlie. Charlie finds that the instance type-checks, so he
signs it and sends it back to Bob, who uses it to claim the
prize.

By itself, this is no more robust than using a batch-mode
server, since all participants need to trust the escrow agent.
However, we can lessen the need for trust by sending the
prize to several escrow agents at once, using an m-of-n script
(recall Section 3.3). For example, using a 2-of-3 script, par-
ticipants can tolerate one of the three agents becoming com-
promised.

Another application of this technique is for redeeming
Typecoin assets for bitcoins. Suppose the banker wants to
back his currency by making an executable promise to buy
newcoins for bitcoins at a certain rate. The banker sends his
bitcoins to a pool of escrow agents, and issues an open trans-
action that takes in the bitcoins and a newcoin, destroys the
newcoin, sends the appropriate number of bitcoins to the
customer, and sends the rest back to the escrow agents.

A more complex application is for contracts that time
out if not completed by a deadline. As we have seen,
these are easy, using expiration, provided one can gener-
ate the asset in question. One simply sends a contract
receipt-for-stuff(if(before(t), coin 1) and the contract
spoils when time expires. This is fine for the banker, but
unacceptable for anyone else (say Alice), because it doesn’t
allow Alice to recover the coin if the contract spoils.

Instead, Alice sends a contract receipt-for-stuff (
if(before(t), token-for-coin), sends the newcoin to the es-
crow agents, and issues an open transaction that trades the
token for the newcoin. She also creates a rule that allows her
to create a token once time expires. Using that token, she
can cash in her own open transaction to recover the newcoin.

8 Related Work

The strategy of using Bitcoin to track ownership of virtual
property other than bitcoins, by overlaying txouts with ad-
ditional meaning invisible to the Bitcoin network, was first
employed in colored coins [19, 15]. In colored coins, a tx-
out is said to represent an asset (colloquially called a color)

8

let x : 〈Banker〉if(¬spent(R), printNnc)← (saybind f ← p in sayreturn(Banker, f r)) in
let y : if(¬spent(R), 〈Banker〉(printNnc))← if/say(x) in
ifbind z : 〈Banker〉(printNnc)← ifweaken¬spent(R)∧before(T)(y) in
ifweaken¬spent(R)∧before(T)(issue Banker T Nnc b z)

Figure 3: Proof term for purchasing newcoins

in much the same way as in Typecoin txouts are said to
represent affine resources.

Assets in the colored-coin system are issued in fungible
units, such as shares of a stock, or units of an alternative
crypto-currency. (Non-fungible assets can be implemented
by issuing just a single unit.) Each txout carries a certain
number of units of the asset.

Unlike Typecoin, a colored-coin transaction does not in-
clude a proof term that dictates how the assets/colors prop-
agate from inputs to outputs. Instead, propagation is de-
fined by a collection of rules, based on the order and bitcoin
amounts of the inputs and outputs. These rules are flexible
enough to allow the splitting and merging of assets, and to
allow different assets to be traded in a single transaction.

However, colored coins do not provide the general ex-
pressive power of affine authorization logic. For instance,
they provide no mechanism for state transitions.

There has been substantial interest [14] in formal lan-
guages for specifying contracts and (to varying degrees) ex-
ecuting them. Particularly influential in the type theory
community is Peyton Jones, et al. [17], who devised a col-
lection of Haskell combinators for specifying contracts and
a semantics for determining their value. Szabo [21] surveys
issues and strategies for executing contracts on the Internet.

Bitcoin is primarily used for processing simple payments,
but it also has a variety of facilities for implementing con-
tracts [13]. Our open transactions are inspired by and gener-
alize Bitcoin’s SIGHASH rules, which erase parts of a trans-
action before checking its signatures, thereby allowing those
parts to be altered.

Much of Bitcoin’s expressive power for contracts is sub-
sumed by our affine logic, but it also supports some idioms
that we cannot express in our logic. For example, to imple-
ment a contract that can be reversed if not completed by
a deadline, Typecoin requires a type-checking escrow agent,
but Bitcoin can do it natively.

A recent alternative is the nascent Ethereum system [22].
Ethereum can be viewed as a variant of Bitcoin with a much
more expressive scripting language for implementing smart
contracts. To prevent denial-of-service attacks, code run-
ning on Ethereum carries “fuel” that is consumed as the code
executes. Exhausting its fuel is one way that an Ethereum
program may halt abnormally (the others being various run-
time type errors).

We conjecture that Ethereum’s scripting language can
be encoded in LF, the logical framework on which Typecoin
is built. If so, Typecoin’s expressive power theoretically sub-
sumes Ethereum, although Ethereum might well offer bet-
ter performance for applications it does support. Moreover,
Ethereum mandates a new infrastructure; it does not build
on the existing Bitcoin infrastructure as Typecoin does.

Bowers et al. [6] describe another method to implement
affine credentials in a proof-carrying authorization system
that avoids the need for a single centralized trusted system
for tracking resources by allowing affirmations to be associ-
ated with a ratifier that will track linear use for the resource.

Linearity of resource use in a proof is then enforced by a rati-
fication step in which the ratifiers of each resource the proof
consumes must sign off on the proof using a fair contract
signing algorithm.

Acknowledgements

We gratefully acknowledge Robert Harper, Robert Sim-
mons, and Glenn Willen for very helpful discussions and
suggestions.

A Judgements and Selected Rules

The Typecoin judgements use four different kinds of con-
texts: LF contexts (Ψ), persistent proof term contexts (Γ),
affine proof term contexts (∆), and condition contexts (Φ):

LF context Ψ ::= · | Ψ, u:τ
proof term context Γ,∆ ::= · | Γ, x:A
condition context Φ ::= · | Φ, ϕ

All contexts except LF contexts are taken to be unordered.
In addition, most of the judgements use a basis (Σ) to resolve
constants. There are thirteen judgement forms in Typecoin:

Σ ` Σ′ ok basis formation
Σ; Ψ ` k kind LF kind formation
Σ; Ψ ` τ : k LF type family formation
Σ; Ψ ` m : τ LF term typing
Σ; Ψ ` A prop proposition formation
Σ; Ψ ` ϕ cond condition formation
T ; Σ; Ψ; Γ; ∆ `M : A proof term typing
T; Σ ` T ok transaction formation
T : Σ chain formation

Φ ⊃ Φ′ condition entailment
A fresh proposition freshness
τ fresh type family freshness
Σ fresh basis freshness

The proof term typing judgement, T ; Σ; Ψ; Γ; ∆ `M : A
has a lot of moving parts. It expresses that the proof term M
proves A under the LF context Ψ, the persistent context Γ,
the linear context ∆, the basis Σ, as part of the transaction
T . The transaction T needs to be part of the judgement
because linear affirmations must be signed relative to the
transaction, in order to prevent replay attacks on it. In the
interest of brevity, we nearly always omit the T .

T ; Σ; Ψ; Γ; ∆ `M : A

Σ; Ψ ` m : principal Σ; Ψ; Γ; ∆ `M : A

Σ; Ψ; Γ; ∆ ` sayreturnmM : 〈m〉A

9

Σ; Ψ; Γ; ∆ `M1 : 〈m〉A Σ; Ψ; Γ; ∆′, x:A `M2 : 〈m〉B
Σ; Ψ; Γ; (∆,∆′) ` saybind x←M1 inM2 : 〈m〉B

T = (Σ′, C,~ι, ~ω,M) Σ; Ψ ` A prop
sig is a signature by K of A,Σ′, C,~ι, ~ω

T ; Σ; Ψ; Γ; ∆ ` assert(K,A, sig) : 〈K〉A

sig is a signature by K of A Σ; Ψ ` A prop

Σ; Ψ; Γ; ∆ ` assert!(K,A, sig) : 〈K〉A

Ψ ` ϕ cond Σ; Ψ; Γ; ∆ `M : A

Σ; Ψ; Γ; ∆ ` ifreturnϕ(M) : if(ϕ,A)

Σ; Ψ; Γ; ∆ `M1 : if(ϕ,A) Σ; Ψ; Γ; ∆′, x:A `M2 : if(ϕ,B)

Σ; Ψ; Γ; (∆,∆′) ` ifbind x←M1 inM2 : if(ϕ,B)

Ψ ` ϕ cond ϕ ⊃ ϕ′ Σ; Ψ; Γ; ∆ `M : if(ϕ′, A)

Σ; Ψ; Γ; ∆ ` ifweakenϕ(M) : if(ϕ,A)

Σ; Ψ; Γ; ∆ `M : 〈m〉if(ϕ,A)

Σ; Ψ; Γ; ∆ ` if/say(M) : if(ϕ, 〈m〉A)

T; Σ ` T ok

T = (Σ, C,~ι, ~ω,M)
Σglobal ` Σ ok Σ fresh
(Σglobal,Σ); · ` C prop C fresh
~ι = txid1.n1 � A1/a1, . . . , txidα.nα � Aα/aα
~ω = B1/b1 � K1, . . . , Bβ/bβ � Kβ

(Σglobal,Σ); · ` Ai prop (for i = 1 . . . α)
(Σglobal,Σ); · ` Bi prop (for i = 1 . . . β)
output ni of txidi in T is A′

i and
Ai = [txidi/this]A

′
i (for i = 1 . . . α)

A = A1 ⊗ · · · ⊗Aα
R = receipt(ω1)⊗ · · · ⊗ receipt(ωβ)
B = B1 ⊗ · · · ⊗Bβ
T ; (Σglobal,Σ); · ; · ; · `M : (C ⊗A⊗R)(if(ϕ,B)
the condition ϕ holds

T; Σglobal ` T ok

T : Σ

· : ·
T : Σglobal T; Σglobal ` T ok T = (Σ, C,~ι, ~ω,M)

T, txid :T : Σglobal, [txid/this]Σ

τ fresh A fresh Σ fresh

There are no freshness rules for restricted forms (non-local
constants, 0, affirmations, receipts).

this.l fresh
τ fresh
τ m fresh

τ ′ fresh

Πx:τ.τ ′ fresh

B fresh
A(B fresh

A fresh
∀u:τ.A fresh

τ fresh A fresh
∃u:τ.A fresh

A fresh B fresh
A&B fresh

A fresh B fresh
A⊗B fresh

A fresh B fresh
A⊕B fresh

1 fresh
A fresh
!A fresh

· fresh
Σ fresh s fresh
Σ, this.`:s fresh

Σ fresh
Σ, this.`:k fresh

Φ ⊃ Φ′

Our condition entailment rules are those of the classical se-
quent calculus:

Φ, ϕ ⊃ ϕ,Φ′
t ≤ t′

Φ, before(t) ⊃ before(t′),Φ′

Φ, ϕ1, ϕ2 ⊃ Φ′

Φ, (ϕ1 ∧ ϕ2) ⊃ Φ′
Φ ⊃ ϕ1,Φ

′ Φ ⊃ ϕ2,Φ
′

Φ ⊃ (ϕ1 ∧ ϕ2),Φ′

Φ ⊃ true,Φ′
Φ, ϕ ⊃ Φ′

Φ ⊃ ¬ϕ,Φ′
Φ ⊃ ϕ,Φ′

Φ,¬ϕ ⊃ Φ′

References

[1] Andrew W. Appel and Edward W. Felten. Proof-
carrying authentication. In ACM Conference on Com-
puter and Communications Security, 1999.

[2] Andrew Barber. Dual intuitionistic linear logic. Tech-
nical Report ECS-LFCS-96-347, Department of Com-
puter Science, University of Edinburgh, September
1996.

[3] Ljudevit Bauer. Access Control for the Web via Proof-
carrying Authorization. PhD thesis, Department of
Computer Science, Princeton University, Princeton,
New Jersey, November 2003.

[4] Bitcoin wiki. Script. Wiki page at https://en.
bitcoin.it/wiki/Script, 2010.

[5] Bitcoin wiki. BIP 0011: M-of-N standard transactions.
Wiki page at https://en.bitcoin.it/wiki/BIP_0011,
2011.

[6] Kevin D. Bowers, Lujo Bauer, Deepak Garg, Frank
Pfenning, and Michael K. Reiter. Consumable creden-
tials in logic-based access-control systems. In 14th An-
nual Network and Distributed System Security Sympo-
sium, pages 143–157, San Diego, California, February
2007.

[7] Deepak Garg, Lujo Bauer, Kevin Bowers, Frank Pfen-
ning, and Michael Reiter. A linear logic of authoriza-
tion and knowledge. In Computer Security—ESORICS
2006: 11th European Symposium on Research in Com-
puter Security, volume 4189 of Lecture Notes in Com-
puter Science, pages 297–312. Springer, September
2006.

[8] Deepak Garg and Frank Pfenning. Non-interference in
constructive authorization logic. In 19th IEEE Com-
puter Security Foundations Workshop, 2006.

10

[9] Jean-Yves Girard. Linear logic. Theoretical Computer
Science, 50:1–102, 1987.

[10] Stuart Haber and W. Scott Stornetta. How to time-
stamp a digital document. Journal of Cryptology, 3(2),
1991.

[11] Robert Harper, Furio Honsell, and Gordon Plotkin. A
framework for defining logics. Journal of the ACM,
40(1):143–184, January 1993.

[12] Robert Harper and Frank Pfenning. On equivalence
and canonical forms in the LF type theory. ACM Trans-
actions on Computational Logic, 6(1), 2005.

[13] Mike Hearn et al. Contracts. Wiki page at https:
//en.bitcoin.it/wiki/Contracts, 2011.

[14] Tom Hvitved. A survey of formal languages for con-
tracts. In Formal Language and Analysis of Contract-
Oriented Software, 2010.

[15] Killerstorm. The theory of colored coins.
GitHub page at https://github.com/bitcoinx/
colored-coin-tools/wiki/colored_coins_intro,
2013.

[16] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. Disseminated to The Cryptography Mail-
ing List, November 2008.

[17] Simon Peyton Jones, Jean-Marc Eber, and Julian Se-
ward. Composing contracts: an adventure in financial
engineering. In 2000 ACM International Conference on
Functional Programming, Montreal, September 2000.

[18] Elizabeth D. Rather, Donald R. Colburn, and
Charles H. Moore. The evolution of Forth. SIGPLAN
Notices, March 1993.

[19] Meni Rosenfeld. Overview of colored coins. Available
at https://bitcoil.co.il/BitcoinX.pdf, December
2012.

[20] Robert J. Simmons. Substructural Logical Specifi-
cations. PhD thesis, Carnegie Mellon University,
School of Computer Science, Pittsburgh, Pennsylvania,
November 2012.

[21] Nick Szabo. Formalizing and securing relationships on
public networks. First Monday, 2(9), September 1997.

[22] Gavin Wood. Ethereum: A secure decentralised gen-
eralised transaction ledger. Available online at http:
//gavwood.com/Paper.pdf, 2014.

11

