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Typecoin

I A general peer-to-peer commitment mechanism - using
the language of linear logic

I Implemented on top of the Bitcoin network

I With applications for proof-carrying authorization



Proof-carrying authorization

I Idea: represent authorization as logical propositions
(Appel and Felten 1999)

I ... in a logic with a notion of affirmation

I 〈K 〉A means “the principal K says A”
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Proof-carrying authorization - higher order use

I Much more flexible policies are possible:

〈Alice〉∀K . 〈Registrar〉 in-Alice’s-class(K )
⊃ may-read(K , file)

I Then can derive:
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Implementing proof-carrying authorization

I Straightforward to make work even in a
decentralized/peer-to-peer system

I Proofs are self-contained

I Digital signatures used for affirmation



Consumable credentials

What if we want one time use authorization?



Linear logic

I Garg et al. 2006; linear proof-carrying authorization

I Linear logic treats hypotheses as scarce resources that
must be used once

I Good for modeling state change:

bread⊗ ham( ham sandwich

∀i . counter(i)( counter(i + 1)

For logicians

Linear logic allows exchange, but not weakening or contraction
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I How to ensure that a resource
isn’t used multiple times?

I Need a mechanism to irreversibly
commit to a state change
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I A coin is a chain of digital certificates
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Bitcoin implementation

I Bitcoin (Nakamoto 2008) does this with a global ledger of all
transactions - the “blockchain”

I Ledger maintained by distributed process called “mining”



From Bitcoin to Typecoin
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From Bitcoin to Typecoin - transactions
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I ` M : (A1 ⊗ · · · ⊗ Am)( (B1 ⊗ · · · ⊗ Bn)

I Carry linear logic1 propositions instead of numbers

1actually affine logic



Authorization example

sign ...
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I Quantification allows transferable permissions

I External choice (“with”) allows choice
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I Transactions can declare types and propositions
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Building a new currency

I Can turn Typecoin back into a currency (S-coins)

coin : nat→ prop

merge : ∀N ,M : nat.
coinN ⊗ coinM ( coinN + M

split : ∀N ,M ,P : nat.
coinN + M ( coinN ⊗ coinM



Central banking

I Need some way to mint a new S-coin

print : nat→ prop

issue : ∀N :nat. 〈Janet〉(printN)( coinN



How to implement?

I We could build Typecoin in a standalone way

I Use adapted versions of the Bitcoin mining algorithms
and protocol

I Could typecheck transactions before they enter the chain



How to implement?

I How to incentivize people to mine on a Typecoin chain?

I Bitcoin already has a lot of mining power

I Typechecking transactions in the chain not an obvious
win: proofs might be big or not public



Overlaying on Bitcoin

I New plan: actually overlay on top of Bitcoin

hash
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Metadata in Bitcoin

I Bitcoin historically lacked a nice place to put metadata -
on principle

I (Nodes would not forward transactions that used the
straightforward methods)

I Paper describes a somewhat hacky workaround

I But the Bitcoin developers have since caved
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Receipts

I Receipts that attest to outputs: receipt(A� addr)

〈Alice〉(receipt(coin(5)� Alice)(
∀K . may-take(K , MilkDuds))



Expiration/revocation

I Conditional modality permits revocation and expiration:

if(before(July 10)), may-write(Alice, POPL-paper))



Implementation

I Implemented in Standard ML

I With a new Bitcoin client, in SML



Related Work

I Bowers et al. 2007; consumable credentials

I Rosenfeld 2013; colored coins

I Wood 2014; Ethereum



Conclusion

I Typecoin is a flexible peer-to-peer logical commitment
mechanism

I Based on generalizing Bitcoin to carry logical propositions

I Actually implemented on top of Bitcoin

I Details on the logic are in the paper



Thank you!



Why not linear?

I Typecoin sort of fundamentally affine - can always throw
away an output

I Allowing rule declarations in signatures makes it trivial

I trash : >( 1

I Prohibit >? trash : A( 1

I Prohibit proving 1? dummy : prop. trash : A( !dummy

I Prohibit consuming A? trash : 〈K 〉dummy( !dummy, sign
〈K 〉(A( dummy)
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Metadata: “m-of-n” outputs

I An “m-of-n” output lists n public keys

I To spend it, provide signatures using m

I 2-of-3 outputs useful for two-party escrow

I We use 1-of-2 outputs to embed metadata

I One public key is the real destination

I The other is actually the hash of our transaction
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