
Peer-to-peer Affine Commitment

using Bitcoin

Karl Crary and Michael J. Sullivan

Carnegie Mellon University
PLDI ’15, Portland

June 17, 2015

Massively Multiplayer Online

Linear Logic

Karl Crary and Michael J. Sullivan

Carnegie Mellon University
PLDI ’15, Portland

June 17, 2015

Typecoin

I A general peer-to-peer commitment mechanism - using
the language of linear logic

I Implemented on top of the Bitcoin network

I With applications for proof-carrying authorization

Proof-carrying authorization

I Idea: represent authorization as logical propositions
(Appel and Felten 1999)

I ... in a logic with a notion of affirmation

I 〈K 〉A means “the principal K says A”

Proof-carrying authorization

I Idea: represent authorization as logical propositions
(Appel and Felten 1999)

I ... in a logic with a notion of affirmation

I 〈K 〉A means “the principal K says A”

Proof-carrying authorization

I Alice wants to give access to a file, so affirms:
I 〈Alice〉 may-read(Bob, file)
I 〈Alice〉 may-read(Charlie, file)

〈Alice〉 may-read(Bob, file)

file contents

Proof-carrying authorization

I Alice wants to give access to a file, so affirms:
I 〈Alice〉 may-read(Bob, file)
I 〈Alice〉 may-read(Charlie, file)

〈Alice〉 may-read(Bob, file)

file contents

Proof-carrying authorization

I Alice wants to give access to a file, so affirms:
I 〈Alice〉 may-read(Bob, file)
I 〈Alice〉 may-read(Charlie, file)

〈Alice〉 may-read(Bob, file)

file contents

Proof-carrying authorization - higher order use

I Much more flexible policies are possible:

〈Alice〉∀K . 〈Registrar〉 in-Alice’s-class(K)
⊃ may-read(K , file)

I Then can derive:

∀K . 〈Registrar〉 in-Alice’s-class(K)
⊃ 〈Alice〉may-read(K , file)

Proof-carrying authorization - higher order use

I Much more flexible policies are possible:

〈Alice〉∀K . 〈Registrar〉 in-Alice’s-class(K)
⊃ may-read(K , file)

I Then can derive:

∀K . 〈Registrar〉 in-Alice’s-class(K)
⊃ 〈Alice〉may-read(K , file)

Implementing proof-carrying authorization

I Straightforward to make work even in a
decentralized/peer-to-peer system

I Proofs are self-contained

I Digital signatures used for affirmation

Consumable credentials

What if we want one time use authorization?

Linear logic

I Garg et al. 2006; linear proof-carrying authorization

I Linear logic treats hypotheses as scarce resources that
must be used once

I Good for modeling state change:

bread⊗ ham(ham sandwich

∀i . counter(i)(counter(i + 1)

For logicians

Linear logic allows exchange, but not weakening or contraction

Linear logic

I Garg et al. 2006; linear proof-carrying authorization

I Linear logic treats hypotheses as scarce resources that
must be used once

I Good for modeling state change:

bread⊗ ham(ham sandwich

∀i . counter(i)(counter(i + 1)

For logicians

Linear logic allows exchange, but not weakening or contraction

Linear authorization

〈Alice〉may-take(Bob, MilkDuds)

〈Alice〉may-take(Bob, MilkDuds)

I How to ensure that a resource
isn’t used multiple times?

I Need a mechanism to irreversibly
commit to a state change

Linear authorization

〈Alice〉may-take(Bob, MilkDuds)

〈Alice〉may-take(Bob, MilkDuds)

I How to ensure that a resource
isn’t used multiple times?

I Need a mechanism to irreversibly
commit to a state change

Bitcoin

I On a completely different note: consider designing a
decentralized digital currency

I A coin is a chain of digital certificates

I A coin is spent by signing it over to somebody else

1’s pubkey

0’s signature

2’s pubkey

1’s signature

3’s pubkey

2’s signature

Bitcoin

I On a completely different note: consider designing a
decentralized digital currency

I A coin is a chain of digital certificates

I A coin is spent by signing it over to somebody else

1’s pubkey

0’s signature

2’s pubkey

1’s signature

3’s pubkey

2’s signature

Bitcoin

I On a completely different note: consider designing a
decentralized digital currency

I A coin is a chain of digital certificates

I A coin is spent by signing it over to somebody else

1’s pubkey

0’s signature

2’s pubkey

1’s signature

3’s pubkey

2’s signature

Bitcoin

I On a completely different note: consider designing a
decentralized digital currency

I A coin is a chain of digital certificates

I A coin is spent by signing it over to somebody else

1’s pubkey

0’s signature

2’s pubkey

1’s signature

3’s pubkey

2’s signature

Bitcoin - the catch

1’s pubkey

0’s signature

2’s pubkey

1’s signature

3’s pubkey

1’s signature

I But how do we prevent an owner from spending a coin
multiple times?

I Need a mechanism to irreversibly commit to a state change

Bitcoin - the catch

1’s pubkey

0’s signature

2’s pubkey

1’s signature

3’s pubkey

1’s signature

I But how do we prevent an owner from spending a coin
multiple times?

I Need a mechanism to irreversibly commit to a state change

Bitcoin - the catch

1’s pubkey

0’s signature

2’s pubkey

1’s signature

3’s pubkey

1’s signature

I But how do we prevent an owner from spending a coin
multiple times?

I Need a mechanism to irreversibly commit to a state change

Bitcoin - the catch

1’s pubkey

0’s signature

2’s pubkey

1’s signature

3’s pubkey

1’s signature

I But how do we prevent an owner from spending a coin
multiple times?

I Need a mechanism to irreversibly commit to a state change

Bitcoin implementation

I Bitcoin (Nakamoto 2008) does this with a global ledger of all
transactions - the “blockchain”

I Ledger maintained by distributed process called “mining”

From Bitcoin to Typecoin

5

4
9

From Bitcoin to Typecoin

cook

bread

ham

ham sandwich

From Bitcoin to Typecoin - transactions

...
...

I1

Im

O1

On

a1

am

b1

bn

I a1 + · · ·+ am = b1 + · · ·+ bn

From Bitcoin to Typecoin - transactions

M
...

...

I1

Im

O1

On

A1

Am

B1

Bn

I ` M : (A1 ⊗ · · · ⊗ Am)((B1 ⊗ · · · ⊗ Bn)

I Carry linear logic1 propositions instead of numbers

1actually affine logic

Authorization example

sign ...
〈Alice〉may-take(Bob, MilkDuds)〈Alice〉∀K . may-take(K , MilkDuds)
〈Alice〉∀K . may-take(K , MilkDuds)

& may-take(K , Hershey′s)

〈Alice〉may-take(Bob, MilkDuds)

I Quantification allows transferable permissions

I External choice (“with”) allows choice

Authorization example

sign

...

〈Alice〉may-take(Bob, MilkDuds)

〈Alice〉∀K . may-take(K , MilkDuds)
〈Alice〉∀K . may-take(K , MilkDuds)

& may-take(K , Hershey′s)

〈Alice〉may-take(Bob, MilkDuds)

I Quantification allows transferable permissions

I External choice (“with”) allows choice

Authorization example

sign ...
〈Alice〉may-take(Bob, MilkDuds)

〈Alice〉∀K . may-take(K , MilkDuds)
〈Alice〉∀K . may-take(K , MilkDuds)

& may-take(K , Hershey′s)

〈Alice〉may-take(Bob, MilkDuds)

I Quantification allows transferable permissions

I External choice (“with”) allows choice

Authorization example

sign ...
〈Alice〉may-take(Bob, MilkDuds)

〈Alice〉∀K . may-take(K , MilkDuds)
〈Alice〉∀K . may-take(K , MilkDuds)

& may-take(K , Hershey′s)

〈Alice〉may-take(Bob, MilkDuds)

I Quantification allows transferable permissions

I External choice (“with”) allows choice

Authorization example

sign ...

〈Alice〉may-take(Bob, MilkDuds)

〈Alice〉∀K . may-take(K , MilkDuds)

〈Alice〉∀K . may-take(K , MilkDuds)
& may-take(K , Hershey′s)

〈Alice〉may-take(Bob, MilkDuds)

I Quantification allows transferable permissions

I External choice (“with”) allows choice

Authorization example

sign ...

〈Alice〉may-take(Bob, MilkDuds)〈Alice〉∀K . may-take(K , MilkDuds)

〈Alice〉∀K . may-take(K , MilkDuds)
& may-take(K , Hershey′s)

〈Alice〉may-take(Bob, MilkDuds)

I Quantification allows transferable permissions

I External choice (“with”) allows choice

Declarations

I Where do may-take, MilkDuds, etc. come from?

I Transactions can declare types and propositions

may-take : principal→ candy→ prop

Declarations

I Where do may-take, MilkDuds, etc. come from?

I Transactions can declare types and propositions

may-take : principal→ candy→ prop

Building a new currency

I Can turn Typecoin back into a currency (S-coins)

coin : nat→ prop

merge : ∀N ,M : nat.
coinN ⊗ coinM (coinN + M

split : ∀N ,M ,P : nat.
coinN + M (coinN ⊗ coinM

Central banking

I Need some way to mint a new S-coin

print : nat→ prop

issue : ∀N :nat. 〈Janet〉(printN)(coinN

How to implement?

I We could build Typecoin in a standalone way

I Use adapted versions of the Bitcoin mining algorithms
and protocol

I Could typecheck transactions before they enter the chain

How to implement?

I How to incentivize people to mine on a Typecoin chain?

I Bitcoin already has a lot of mining power

I Typechecking transactions in the chain not an obvious
win: proofs might be big or not public

Overlaying on Bitcoin

I New plan: actually overlay on top of Bitcoin

hash

M
...

...

I1

Im

O1

On

A1

Am

B1

Bn

...
...

I1

Im

O1

On

a1

am

b1

bn

I Embed a hash in the metadata of the Bitcoin transaction

I Send the Typecoin transactions to interested parties

Overlaying on Bitcoin

I New plan: actually overlay on top of Bitcoin

hash

 M
...

...

I1

Im

O1

On

A1

Am

B1

Bn

...
...

I1

Im

O1

On

a1

am

b1

bn

I Embed a hash in the metadata of the Bitcoin transaction

I Send the Typecoin transactions to interested parties

Metadata in Bitcoin

I Bitcoin historically lacked a nice place to put metadata -
on principle

I (Nodes would not forward transactions that used the
straightforward methods)

I Paper describes a somewhat hacky workaround

I But the Bitcoin developers have since caved

Metadata in Bitcoin

I Bitcoin historically lacked a nice place to put metadata -
on principle

I (Nodes would not forward transactions that used the
straightforward methods)

I Paper describes a somewhat hacky workaround

I But the Bitcoin developers have since caved

Receipts

I Receipts that attest to outputs: receipt(A� addr)

〈Alice〉(receipt(coin(5)� Alice)(
∀K . may-take(K , MilkDuds))

Expiration/revocation

I Conditional modality permits revocation and expiration:

if(before(July 10)), may-write(Alice, POPL-paper))

Implementation

I Implemented in Standard ML

I With a new Bitcoin client, in SML

Related Work

I Bowers et al. 2007; consumable credentials

I Rosenfeld 2013; colored coins

I Wood 2014; Ethereum

Conclusion

I Typecoin is a flexible peer-to-peer logical commitment
mechanism

I Based on generalizing Bitcoin to carry logical propositions

I Actually implemented on top of Bitcoin

I Details on the logic are in the paper

Thank you!

Why not linear?

I Typecoin sort of fundamentally affine - can always throw
away an output

I Allowing rule declarations in signatures makes it trivial

I trash : >(1

I Prohibit >? trash : A(1

I Prohibit proving 1? dummy : prop. trash : A(!dummy

I Prohibit consuming A? trash : 〈K 〉dummy(!dummy, sign
〈K 〉(A(dummy)

Why not linear?

I Typecoin sort of fundamentally affine - can always throw
away an output

I Allowing rule declarations in signatures makes it trivial

I trash : >(1

I Prohibit >? trash : A(1

I Prohibit proving 1? dummy : prop. trash : A(!dummy

I Prohibit consuming A? trash : 〈K 〉dummy(!dummy, sign
〈K 〉(A(dummy)

Metadata: “m-of-n” outputs

I An “m-of-n” output lists n public keys

I To spend it, provide signatures using m

I 2-of-3 outputs useful for two-party escrow

I We use 1-of-2 outputs to embed metadata

I One public key is the real destination

I The other is actually the hash of our transaction

	Introduction
	Proof-carrying authorization
	Linear logic
	Bitcoin

	Typecoin
	Transactions
	Examples

	Implementation
	Standalone Implementation?
	Use Bitcoin

	Misc
	Stuff
	Related Work

