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Disclaimer

¢ Rust is under heavy development.

OTHER CONCLUSION
00

e The things described in this talk may not be true

tomorrow.

e What | discuss and how | present issues reflect my

personal biases in language design.
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o Safe: type system provides guarantees that prevent
certain bugs

o Concurrent: easy to build concurrent programs and to
take advantage of parallelism
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Goals
What do we want in a programming language?

Fast: generates efficient machine code

Safe: type system provides guarantees that prevent
certain bugs

Concurrent: easy to build concurrent programs and to
take advantage of parallelism

“Systemsy": fine grained control, predictable performance
characteristics
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Erlang is safe and concurrent

Haskell is (sometimes) fast, (very) safe, and concurrent
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Goals
What do have?

Firefox is in C++, which is Fast and Systemsy

ML is (sometimes) fast and (very) safe

Erlang is safe and concurrent

Haskell is (sometimes) fast, (very) safe, and concurrent

Java and C# are fast and safe
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Rust

a systems language

pursuing the trifecta

safe, concurrent, fast
-lkuper
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Design

Type system features

Algebraic data type and pattern matching (no null
pointers!)

Polymorphism: functions and types can have generic type
parameters

Type inference on local variables

A somewhat idiosyncratic typeclass system (“traits”)

Data structures are immutable by default

e Region pointers allow safe pointers into non-heap objects
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Other features

o Lightweight tasks with no shared state
o Control over memory allocation

e Move semantics, unique pointers
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... What?

“It's like C++ grew up, went to grad school, started dating
ML, and is sharing an office with Erlang.”
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Status
rustc

Self-hosting rust compiler
Uses LLVM as a backend

Handles polymorphism and typeclasses by

monomorphizing

Memory management through automatic reference

counting (eww)
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Status
The catch

Not ready for prime time

Lots of bugs and exposed sharp edges
Language still changing rapidly

But getting really close!
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Rust pointer types (@ and ~)
@-pointers

We want to be able to put objects in the heap

Want to automatically reclaim memory when all
references are dropped

©-pointers do this; something of type @int is a pointer to
a heap allocated int

When an @-pointer is copied, just the pointer is copied;
there can be multiple references to the same object
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Rust pointer types (@ and ~)
@-pointers

We want to be able to put objects in the heap

Want to automatically reclaim memory when all
references are dropped

©-pointers do this; something of type @int is a pointer to
a heap allocated int

When an @-pointer is copied, just the pointer is copied;
there can be multiple references to the same object

Since we don’t want to have a concurrent GC, these can
not be sent between tasks
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Rust pointer types (@ and ~)
~-pointers

Sometimes we need to be able to send heap values to
other tasks, though

~-pointers are unique pointers; the object pointed to is
owned by exactly one pointer

When a ~-pointer is copied, the underlying data is copied
as well

~-pointers can be sent to other tasks by “move”; the
sender must relinquish its reference
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Vectors

Vector types

e [T] is the type of vectors containing T
o Vectors are a “second class” type: they can only appear
inside some kind of pointer type

¢ In memory, vectors look like

struct vec {
size_t size;
size_t allocated;
char buf[];
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Vectors

Some vector code

fn seq_range(lo: uint, hi: uint) -> “[uint] {
let mut v = ~[];
for uint::range(lo, hi) |il| {
vec::push(v, 1i);

}

e v must be the only pointer to the vector, so we can get
away with modifying it in place.
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Vectors
Some vector code

fn seq_range(lo: uint, hi: uint) -> “[uint] {
let mut v = ~[];
for uint::range(lo, hi) |il| {
vec::push(v, 1i);

}

e v must be the only pointer to the vector, so we can get
away with modifying it in place.

o Unfortunately, this can’t work with an ©@-vector.
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How do we build up @-vectors?

e We can't modify or resize an ©@-vector

e But building a vector by pushing elements on the back
seems to be a very natural imperative idiom
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e But building a vector by pushing elements on the back
seems to be a very natural imperative idiom
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Vectors
How do we build up @-vectors?

We can’t modify or resize an ©-vector

But building a vector by pushing elements on the back
seems to be a very natural imperative idiom

Unless we know for sure that there is only one reference...

Can build up safe abstractions that wrap a reference to
an ©-vector; a wrapper object like Java's ArrayList
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Vectors
How do we build up @-vectors?

We can’t modify or resize an ©-vector

But building a vector by pushing elements on the back
seems to be a very natural imperative idiom

Unless we know for sure that there is only one reference...

Can build up safe abstractions that wrap a reference to
an ©-vector; a wrapper object like Java's ArrayList

This is somewhat unsatisfying, though; | want a
mechanism to construct @-vectors directly
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Vectors
An interface for building @-vectors

fn build<A>(builder: fn(push: fn(+A))) -> @[A];

e build allocates a new vector, and then calls builder
with an argument that can be used to push onto the array

e build has the only reference to the vector being built
until construction is complete

¢ Implemented with unsafe code, but interface is safe
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Vectors
An interface for building @-vectors

fn build<A>(builder: fn(push: fn(+A))) -> @[A];

e build allocates a new vector, and then calls builder
with an argument that can be used to push onto the array

e build has the only reference to the vector being built
until construction is complete

¢ Implemented with unsafe code, but interface is safe
e This is a third order function!
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Vectors
Using the new interface

fn build<A>(builder: fn(push: fn(+A))) -> @[A];

fn seq_range(lo: uint, hi: uint) -> @[uint] {
do build |push| {
for uint::range(lo, hi) [i] {
push (i) ;
}

e This seems to be a fairly natural idiom

e Lots of other primitives can be built on it

20
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Traits
What are traits?

o Traits are interfaces that specify a set of methods for
types to implement

e Functions can be parameterized over types that
implement a certain trait

o Like typeclasses in Haskell



INTRODUCTION Rust VECTORS STATIC TRAIT METHODS OTHER CONCLUSION

o] 000 [e]e] (o] le} [e]e]
[e]e] 00 00000 000
o]

Traits

Trait example

trait Show {
fn show() -> “str;
}
impl int : Show {
fn show() -> "str { int::to_str(self) }
}

fn exclaim<T: Show>(x: T) -> “str {
x.show () + ~"iny

o
]
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Traits

An annoying limitation

e Traits just contain “methods”, which are called with dot
notation, and require an element of the trait type

e There are plenty of places where you want to be able to
create objects in a type parametric way

o
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Traits

An annoying limitation

e Traits just contain “methods”, which are called with dot
notation, and require an element of the trait type

e There are plenty of places where you want to be able to
create objects in a type parametric way

o Consider a trait for reading in elements of a type from a
string
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Static trait methods
A solution

| added a static keyword that can be applied to trait
methods

Static methods do not take a self parameter and can
not be called with dot notation

Instead, they are a regular function in the parent
namespace of the trait

This function is parameterized over the trait type
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Static trait methods
A solution

| added a static keyword that can be applied to trait
methods

Static methods do not take a self parameter and can
not be called with dot notation

Instead, they are a regular function in the parent
namespace of the trait

This function is parameterized over the trait type

(This is how all typeclass functions work in Haskell)
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Static trait methods
Some example code

trait Read {
static fn read(“str) -> self;

}

read will have the signature:

fn read<T: Read>("str) -> T
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Static trait methods
Bringing it all together

trait Buildable<A> {
static fn build(builder: fn(push: fn(+A4)))
-> self;

fn seq_range<BT: Buildable<uint>>(lo: uint,
hi: uint) -> BT {
do build () |pushl| {
for uint::range(lo, hi) |il {
push (i) ;
}

e buildable is a very powerful interface
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Other things

Other projects

o Made major syntax changes to vectors and strings

OTHER
[ o)

CONCLUSION

o Added compiler diagnostics to prevent implicit copying of

mutable and heap allocated data

o Explicit self parameters



INTRODUCTION RusT VECTORS StaTIC TRAIT METHODS OTHER CONCLUSION

[e] 000 (e]e] 000 oe
(e]e} (o]e] 00000 [e]e]e}
[e]

Other things
Fized a lot of bugs

41903, #2189, #2351, #2408, #2417, #2422, #2423,

10426, 42446, #2448, #2450, #2462, #2466, #2468,

40473, #2480, #2503, #2531, #2536, #2547, #2552,

42613, #2629, #2630, #2638, #2652, #2705, #2710,

40725, #2730, #2732, #2746, #2747, 42748, #2759,

42792, 42796, #2863, #2906, #2907, #2908, #2922,
#3132, #3191
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Conclusion

Rust is a new systems language out of Mozilla Research
that is designed to be fast, concurrent, and safe

| worked on a bunch of different stuff on it this summer

Third order functions are apparently useful for
constructing arrays imperatively

Our traits are now almost as cool as Haskell98's
typeclasses
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