
Introduction Rust Vectors Static Trait Methods Other Conclusion

Vector Reform and Static Typeclass

Methods

Michael Sullivan

August 15, 2012

1 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Outline

Introduction

Rust

Vectors

Static Trait Methods

Other

2 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Disclaimer

� Rust is under heavy development.

� The things described in this talk may not be true
tomorrow.

� What I discuss and how I present issues reflect my
personal biases in language design.

3 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Disclaimer

� Rust is under heavy development.

� The things described in this talk may not be true
tomorrow.

� What I discuss and how I present issues reflect my
personal biases in language design.

3 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Disclaimer

� Rust is under heavy development.

� The things described in this talk may not be true
tomorrow.

� What I discuss and how I present issues reflect my
personal biases in language design.

3 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Disclaimer

� Rust is under heavy development.

� The things described in this talk may not be true
tomorrow.

� What I discuss and how I present issues reflect my
personal biases in language design.

3 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Goals
What do we want in a programming language?

� Fast: generates efficient machine code

� Safe: type system provides guarantees that prevent
certain bugs

� Concurrent: easy to build concurrent programs and to
take advantage of parallelism

� “Systemsy”: fine grained control, predictable performance
characteristics

4 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Goals
What do we want in a programming language?

� Fast: generates efficient machine code

� Safe: type system provides guarantees that prevent
certain bugs

� Concurrent: easy to build concurrent programs and to
take advantage of parallelism

� “Systemsy”: fine grained control, predictable performance
characteristics

4 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Goals
What do we want in a programming language?

� Fast: generates efficient machine code

� Safe: type system provides guarantees that prevent
certain bugs

� Concurrent: easy to build concurrent programs and to
take advantage of parallelism

� “Systemsy”: fine grained control, predictable performance
characteristics

4 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Goals
What do we want in a programming language?

� Fast: generates efficient machine code

� Safe: type system provides guarantees that prevent
certain bugs

� Concurrent: easy to build concurrent programs and to
take advantage of parallelism

� “Systemsy”: fine grained control, predictable performance
characteristics

4 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Goals
What do we want in a programming language?

� Fast: generates efficient machine code

� Safe: type system provides guarantees that prevent
certain bugs

� Concurrent: easy to build concurrent programs and to
take advantage of parallelism

� “Systemsy”: fine grained control, predictable performance
characteristics

4 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Goals
What do have?

� Firefox is in C++, which is Fast and Systemsy

� ML is (sometimes) fast and (very) safe

� Erlang is safe and concurrent

� Haskell is (sometimes) fast, (very) safe, and concurrent

� Java and C# are fast and safe

5 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Goals
What do have?

� Firefox is in C++, which is Fast and Systemsy

� ML is (sometimes) fast and (very) safe

� Erlang is safe and concurrent

� Haskell is (sometimes) fast, (very) safe, and concurrent

� Java and C# are fast and safe

5 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Goals
What do have?

� Firefox is in C++, which is Fast and Systemsy

� ML is (sometimes) fast and (very) safe

� Erlang is safe and concurrent

� Haskell is (sometimes) fast, (very) safe, and concurrent

� Java and C# are fast and safe

5 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Goals
What do have?

� Firefox is in C++, which is Fast and Systemsy

� ML is (sometimes) fast and (very) safe

� Erlang is safe and concurrent

� Haskell is (sometimes) fast, (very) safe, and concurrent

� Java and C# are fast and safe

5 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Goals
What do have?

� Firefox is in C++, which is Fast and Systemsy

� ML is (sometimes) fast and (very) safe

� Erlang is safe and concurrent

� Haskell is (sometimes) fast, (very) safe, and concurrent

� Java and C# are fast and safe

5 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Rust

a systems language
pursuing the trifecta
safe, concurrent, fast

-lkuper

6 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Rust

Design
Status

7 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Design
Type system features

� Algebraic data type and pattern matching (no null
pointers!)

� Polymorphism: functions and types can have generic type
parameters

� Type inference on local variables

� A somewhat idiosyncratic typeclass system (“traits”)

� Data structures are immutable by default

� Region pointers allow safe pointers into non-heap objects

8 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Design
Other features

� Lightweight tasks with no shared state

� Control over memory allocation

� Move semantics, unique pointers

9 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Design
...What?

“It’s like C++ grew up, went to grad school, started dating
ML, and is sharing an office with Erlang.”

10 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Status
rustc

� Self-hosting rust compiler

� Uses LLVM as a backend

� Handles polymorphism and typeclasses by
monomorphizing

� Memory management through automatic reference
counting (eww)

11 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Status
rustc

� Self-hosting rust compiler

� Uses LLVM as a backend

� Handles polymorphism and typeclasses by
monomorphizing

� Memory management through automatic reference
counting (eww)

11 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Status
rustc

� Self-hosting rust compiler

� Uses LLVM as a backend

� Handles polymorphism and typeclasses by
monomorphizing

� Memory management through automatic reference
counting (eww)

11 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Status
rustc

� Self-hosting rust compiler

� Uses LLVM as a backend

� Handles polymorphism and typeclasses by
monomorphizing

� Memory management through automatic reference
counting (eww)

11 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Status
The catch

� Not ready for prime time

� Lots of bugs and exposed sharp edges

� Language still changing rapidly

� But getting really close!

12 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Status
The catch

� Not ready for prime time

� Lots of bugs and exposed sharp edges

� Language still changing rapidly

� But getting really close!

12 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Status
The catch

� Not ready for prime time

� Lots of bugs and exposed sharp edges

� Language still changing rapidly

� But getting really close!

12 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Status
The catch

� Not ready for prime time

� Lots of bugs and exposed sharp edges

� Language still changing rapidly

� But getting really close!

12 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Vectors

Rust pointer types (@ and ∼)
Vectors

13 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Rust pointer types (@ and ∼)
@-pointers

� We want to be able to put objects in the heap

� Want to automatically reclaim memory when all
references are dropped

� @-pointers do this; something of type @int is a pointer to
a heap allocated int

� When an @-pointer is copied, just the pointer is copied;
there can be multiple references to the same object

� Since we don’t want to have a concurrent GC, these can
not be sent between tasks

14 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Rust pointer types (@ and ∼)
@-pointers

� We want to be able to put objects in the heap

� Want to automatically reclaim memory when all
references are dropped

� @-pointers do this; something of type @int is a pointer to
a heap allocated int

� When an @-pointer is copied, just the pointer is copied;
there can be multiple references to the same object

� Since we don’t want to have a concurrent GC, these can
not be sent between tasks

14 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Rust pointer types (@ and ∼)
@-pointers

� We want to be able to put objects in the heap

� Want to automatically reclaim memory when all
references are dropped

� @-pointers do this; something of type @int is a pointer to
a heap allocated int

� When an @-pointer is copied, just the pointer is copied;
there can be multiple references to the same object

� Since we don’t want to have a concurrent GC, these can
not be sent between tasks

14 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Rust pointer types (@ and ∼)
∼-pointers

� Sometimes we need to be able to send heap values to
other tasks, though

� ∼-pointers are unique pointers; the object pointed to is
owned by exactly one pointer

� When a ∼-pointer is copied, the underlying data is copied
as well

� ∼-pointers can be sent to other tasks by “move”; the
sender must relinquish its reference

15 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Rust pointer types (@ and ∼)
∼-pointers

� Sometimes we need to be able to send heap values to
other tasks, though

� ∼-pointers are unique pointers; the object pointed to is
owned by exactly one pointer

� When a ∼-pointer is copied, the underlying data is copied
as well

� ∼-pointers can be sent to other tasks by “move”; the
sender must relinquish its reference

15 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Vectors
Vector types

� [T] is the type of vectors containing T

� Vectors are a “second class” type: they can only appear
inside some kind of pointer type

� In memory, vectors look like

struct vec {

size_t size;

size_t allocated;

char buf[];

}

16 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Vectors
Some vector code

fn seq_range(lo: uint , hi: uint) -> ~[uint] {

let mut v = ~[];

for uint:: range(lo , hi) |i| {

vec::push(v, i);

}

}

� v must be the only pointer to the vector, so we can get
away with modifying it in place.

� Unfortunately, this can’t work with an @-vector.

17 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Vectors
Some vector code

fn seq_range(lo: uint , hi: uint) -> ~[uint] {

let mut v = ~[];

for uint:: range(lo , hi) |i| {

vec::push(v, i);

}

}

� v must be the only pointer to the vector, so we can get
away with modifying it in place.

� Unfortunately, this can’t work with an @-vector.

17 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Vectors
How do we build up @-vectors?

� We can’t modify or resize an @-vector

� But building a vector by pushing elements on the back
seems to be a very natural imperative idiom

� Unless we know for sure that there is only one reference...

� Can build up safe abstractions that wrap a reference to
an @-vector; a wrapper object like Java’s ArrayList

� This is somewhat unsatisfying, though; I want a
mechanism to construct @-vectors directly

18 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Vectors
How do we build up @-vectors?

� We can’t modify or resize an @-vector

� But building a vector by pushing elements on the back
seems to be a very natural imperative idiom

� Unless we know for sure that there is only one reference...

� Can build up safe abstractions that wrap a reference to
an @-vector; a wrapper object like Java’s ArrayList

� This is somewhat unsatisfying, though; I want a
mechanism to construct @-vectors directly

18 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Vectors
How do we build up @-vectors?

� We can’t modify or resize an @-vector

� But building a vector by pushing elements on the back
seems to be a very natural imperative idiom

� Unless we know for sure that there is only one reference...

� Can build up safe abstractions that wrap a reference to
an @-vector; a wrapper object like Java’s ArrayList

� This is somewhat unsatisfying, though; I want a
mechanism to construct @-vectors directly

18 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Vectors
How do we build up @-vectors?

� We can’t modify or resize an @-vector

� But building a vector by pushing elements on the back
seems to be a very natural imperative idiom

� Unless we know for sure that there is only one reference...

� Can build up safe abstractions that wrap a reference to
an @-vector; a wrapper object like Java’s ArrayList

� This is somewhat unsatisfying, though; I want a
mechanism to construct @-vectors directly

18 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Vectors
An interface for building @-vectors

fn build <A>(builder: fn(push: fn(+A))) -> @[A];

� build allocates a new vector, and then calls builder

with an argument that can be used to push onto the array

� build has the only reference to the vector being built
until construction is complete

� Implemented with unsafe code, but interface is safe

� This is a third order function!

19 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Vectors
An interface for building @-vectors

fn build <A>(builder: fn(push: fn(+A))) -> @[A];

� build allocates a new vector, and then calls builder

with an argument that can be used to push onto the array

� build has the only reference to the vector being built
until construction is complete

� Implemented with unsafe code, but interface is safe

� This is a third order function!

19 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Vectors
Using the new interface

fn build <A>(builder: fn(push: fn(+A))) -> @[A];

fn seq_range(lo: uint , hi: uint) -> @[uint] {

do build |push| {

for uint:: range(lo , hi) |i| {

push(i);

}

}

}

� This seems to be a fairly natural idiom

� Lots of other primitives can be built on it

20 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Traits
What are traits?

� Traits are interfaces that specify a set of methods for
types to implement

� Functions can be parameterized over types that
implement a certain trait

� Like typeclasses in Haskell

21 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Traits
Trait example

trait Show {

fn show() -> ~str;

}

impl int : Show {

fn show() -> ~str { int:: to_str(self) }

}

fn exclaim <T: Show >(x: T) -> ~str {

x.show() + ~"!";

}

22 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Traits
An annoying limitation

� Traits just contain “methods”, which are called with dot
notation, and require an element of the trait type

� There are plenty of places where you want to be able to
create objects in a type parametric way

� Consider a trait for reading in elements of a type from a
string

23 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Traits
An annoying limitation

� Traits just contain “methods”, which are called with dot
notation, and require an element of the trait type

� There are plenty of places where you want to be able to
create objects in a type parametric way

� Consider a trait for reading in elements of a type from a
string

23 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Static trait methods
A solution

� I added a static keyword that can be applied to trait
methods

� Static methods do not take a self parameter and can
not be called with dot notation

� Instead, they are a regular function in the parent
namespace of the trait

� This function is parameterized over the trait type

� (This is how all typeclass functions work in Haskell)

24 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Static trait methods
A solution

� I added a static keyword that can be applied to trait
methods

� Static methods do not take a self parameter and can
not be called with dot notation

� Instead, they are a regular function in the parent
namespace of the trait

� This function is parameterized over the trait type

� (This is how all typeclass functions work in Haskell)

24 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Static trait methods
Some example code

trait Read {

static fn read(~str) -> self;

}

read will have the signature:

fn read <T: Read >(~ str) -> T

25 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Static trait methods
Bringing it all together

trait Buildable <A> {

static fn build(builder: fn(push: fn(+A)))

-> self;

}

fn seq_range <BT: Buildable <uint >>(lo: uint ,

hi: uint) -> BT {

do build () |push| {

for uint:: range(lo , hi) |i| {

push(i);

}

}

}

� buildable is a very powerful interface

26 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Other things
Other projects

� Made major syntax changes to vectors and strings

� Added compiler diagnostics to prevent implicit copying of
mutable and heap allocated data

� Explicit self parameters

27 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Other things
Fixed a lot of bugs

#1993, #2189, #2351, #2408, #2417, #2422, #2423,
#2426, #2446, #2448, #2450, #2462, #2466, #2468,
#2473, #2480, #2503, #2531, #2536, #2547, #2552,
#2613, #2629, #2630, #2638, #2652, #2705, #2710,
#2725, #2730, #2732, #2746, #2747, #2748, #2759,
#2792, #2796, #2863, #2906, #2907, #2908, #2922,

#3132, #3191

28 / 29

Introduction Rust Vectors Static Trait Methods Other Conclusion

Conclusion

� Rust is a new systems language out of Mozilla Research
that is designed to be fast, concurrent, and safe

� I worked on a bunch of different stuff on it this summer

� Third order functions are apparently useful for
constructing arrays imperatively

� Our traits are now almost as cool as Haskell98’s
typeclasses

29 / 29

	Introduction
	Disclaimer
	Goals
	Rust

	Rust
	Design
	Status

	Vectors
	Rust pointer types (@ and)
	Vectors

	Static Trait Methods
	Traits
	Static trait methods

	Other
	Other things

