INTRODUCTION RusT VECTORS StaTIC TRAIT METHODS OTHER CONCLUSION

[e] 000 (e]e] 000 (e]e]
(e]e} (o]e] 00000 [e]e]e}
[e]

Vector Reform and Static Typeclass
Methods

Michael Sullivan

August 15, 2012

Outline

Introduction

Rust

Vectors

Static Trait Methods

Other

2/29

Disclaimer

3/29

Disclaimer

¢ Rust is under heavy development.

3/29

INTRODUCTION RusT VECTORS StaTIC TRAIT METHODS OTHER CONCLUSION

[] 000 [e]e] 000 [e]e]
80 [e]e) 00000 000
Disclaimer

¢ Rust is under heavy development.

e The things described in this talk may not be true
tomorrow.

3/29

INTRODUCTION RusT VECTORS StaTIC TRAIT METHODS
000 000

o (e]e]
(e]e} (o]e] 00000 [e]e]e}
[e]

Disclaimer

¢ Rust is under heavy development.

OTHER CONCLUSION
00

e The things described in this talk may not be true

tomorrow.

e What | discuss and how | present issues reflect my

personal biases in language design.

o

Goals
What do we want in a programming language?

1/29

INTRODUCTION RusT VECTORS STATIC TRAIT METHODS OTHER

(e} 000 [e]e] 000 [e]e]
[Jeo) [e]e) 00000 000
(e}

Goals

What do we want in a programming language?

o Fast: generates efficient machine code

CONCLUSION

INTRODUCTION RusT VECTORS StaTIC TRAIT METHODS OTHER

[e] 000 (e]e] 000 (e]e]
[1o} (o]e] 00000 [e]e]e}
[e]

Goals
What do we want in a programming language?

o Fast: generates efficient machine code

o Safe: type system provides guarantees that prevent
certain bugs

CONCLUSION

29

INTRODUCTION RuST VECTORS STATIC

[e]
[1o}
[e]

I'RAIT METHODS OTHER

000 (e]e] 000 (e]e]
(o]e] 00000 [e]e]e}

Goals
What do we want in a programming language?

o Fast: generates efficient machine code

o Safe: type system provides guarantees that prevent
certain bugs

o Concurrent: easy to build concurrent programs and to
take advantage of parallelism

CONCLUSION

INTRODUCTION

[e]
[1o}
[e]

RusT VECTORS StaTIC TRAIT METHODS OTHER CONCLUSION

000 (e]e] 000 (e]e]
(o]e] 00000 [e]e]e}

Goals
What do we want in a programming language?

Fast: generates efficient machine code

Safe: type system provides guarantees that prevent
certain bugs

Concurrent: easy to build concurrent programs and to
take advantage of parallelism

“Systemsy": fine grained control, predictable performance
characteristics

INTRODUCTION RusT VECTORS STATIC TRAIT METHODS OTHER CONCLUSION

[e] 000 (e]e] 000 (e]e]
oe (o]e] 00000 [e]e]e}
[e]

Goals
What do have?

o Firefox is in C++, which is Fast and Systemsy

INTRODUCTION RusT VECTORS StaTIC TRAIT METHODS OTHER CONCLUSION

(e} 000 [e]e] 000 [e]e]
oe [e]e) 00000 000
(e}

Goals

What do have?

o Firefox is in C++, which is Fast and Systemsy
e ML is (sometimes) fast and (very) safe

5/29

INTRODUCTION RusT VECTORS StaTIC TRAIT METHODS OTHER CONCLUSION

(e} 000 [e]e] 000 [e]e]
oe [e]e) 00000 000
(e}

Goals

What do have?

o Firefox is in C++, which is Fast and Systemsy
e ML is (sometimes) fast and (very) safe
e Erlang is safe and concurrent

5/29

INTRODUCTION

[e]
oe
[e]

RusT VECTORS StaTIC TRAIT METHODS OTHER CONCLUSION
000 00 000 00
oo 00000 000

What do have?

Firefox is in C++, which is Fast and Systemsy
ML is (sometimes) fast and (very) safe
Erlang is safe and concurrent

Haskell is (sometimes) fast, (very) safe, and concurrent

INTRODUCTION

[e]
oe
[e]

RusT VECTORS StaTIC TRAIT METHODS OTHER CONCLUSION

000 (e]e] 000 (e]e]
(o]e] 00000 [e]e]e}

Goals
What do have?

Firefox is in C++, which is Fast and Systemsy

ML is (sometimes) fast and (very) safe

Erlang is safe and concurrent

Haskell is (sometimes) fast, (very) safe, and concurrent

Java and C# are fast and safe

INTRODUCTION RusT VECTORS STATIC TRAIT METHODS OTHER CONCLUSION

(e} 000 [e]e] 000 [e]e]
00 [e]e) 00000 000
[]

Rust

a systems language

pursuing the trifecta

safe, concurrent, fast
-lkuper

6/29

Rust

Design
Status

7/29

INTRODUCTION RusT VECTORS StaTIC TRAIT METHODS OTHER CONCLUSION

o] 000 [e]e) 000 (e]e)
[e]e] 00 00000 000
o]

Design

Type system features

Algebraic data type and pattern matching (no null
pointers!)

Polymorphism: functions and types can have generic type
parameters

Type inference on local variables

A somewhat idiosyncratic typeclass system (“traits”)

Data structures are immutable by default

e Region pointers allow safe pointers into non-heap objects

INTRODUCTION RusT VECTORS StaTIC TRAIT METHODS OTHER CONCLUSION

[e]
(e]e}
[e]

[e] Jo] [e]e] 000 [e]e]
[e]e) 00000 000
Design
Other features

o Lightweight tasks with no shared state
o Control over memory allocation

e Move semantics, unique pointers

9/29

INTRODUCTION RusT VECTORS StaTIC TRAIT METHODS OTHER CONCLUSION

o] ooe [e]e] 000 [e]e]
80 00 00000 000
Design
... What?

“It's like C++ grew up, went to grad school, started dating
ML, and is sharing an office with Erlang.”

10 /29

Status
rustc

e Self-hosting rust compiler

11/29

INTRODUCTION

[e]
(e]e}
[e]

RusT VECTORS STATIC TRAIT METHODS OTHER CONCLUSION

000 (e]e] 000 (e]e]
0 00000 [e]e]e}

Status
rustc

e Self-hosting rust compiler
e Uses LLVM as a backend

INTRODUCTION RusT VECTORS StaTIC TRAIT METHODS OTHER
o 000

CONCLUSION

[e]e] 000 [e]e]
80 [o] 00000 000
Status
rustc

e Self-hosting rust compiler
e Uses LLVM as a backend

¢ Handles polymorphism and typeclasses by
monomorphizing

INTRODUCTION
o

00

o

RusT VECTORS STATIC

000 (e]e] 000
0 00000 [e]e]e}

Status
rustc

Self-hosting rust compiler
Uses LLVM as a backend

Handles polymorphism and typeclasses by

monomorphizing

Memory management through automatic reference

counting (eww)

OTHER
00

CONCLUSION

Status
The catch

» Not ready for prime time

12/29

INTRODUCTION RusT VECTORS STATIC TRAIT METHODS OTHER CONCLUSION

(e} 000 [e]e] 000 [e]e]
80 oe 00000 000
Status
The catch

o Not ready for prime time

o Lots of bugs and exposed sharp edges

12 /29

INTRODUCTION RusT VECTORS StaTIC TRAIT METHODS

[e]
(e]e}
[e]

000 [e]e] 000
oe 00000 000
Status
The catch

o Not ready for prime time
o Lots of bugs and exposed sharp edges
e Language still changing rapidly

OTHER
00

CONCLUSION

INTRODUCTION
[e]

(e]e}

[e]

RusT VECTORS StaTIC TRAIT METHODS

000 [e]e] 000
oe 00000 000
Status
The catch

Not ready for prime time

Lots of bugs and exposed sharp edges
Language still changing rapidly

But getting really close!

OTHER
00

CONCLUSION

Vectors

Rust pointer types (@ and ~)
Vectors

13/29

INTRODUCTION RusT VECTORS StaTIC TRAIT METHODS OTHER CONCLUSION

[e] 000 [Je] 000 (e]e]
(e]e} (o]e] 00000 [e]e]e}
[e]

Rust pointer types (@ and ~)
@-pointers

e We want to be able to put objects in the heap

o Want to automatically reclaim memory when all
references are dropped

INTRODUCTION RusT VECTORS StaTIC TRAIT METHODS OTHER CONCLUSION

[e] 000 [Je] 000 (e]e]
(e]e} (o]e] 00000 [e]e]e}
[e]

Rust pointer types (@ and ~)
@-pointers

We want to be able to put objects in the heap

Want to automatically reclaim memory when all
references are dropped

©-pointers do this; something of type @int is a pointer to
a heap allocated int

When an @-pointer is copied, just the pointer is copied;
there can be multiple references to the same object

INTRODUCTION
o

00

o

RusT VECTORS StaTIC TRAIT METHODS OTHER CONCLUSION

000 [Je] 000 (e]e]
(o]e] 00000 [e]e]e}

Rust pointer types (@ and ~)
@-pointers

We want to be able to put objects in the heap

Want to automatically reclaim memory when all
references are dropped

©-pointers do this; something of type @int is a pointer to
a heap allocated int

When an @-pointer is copied, just the pointer is copied;
there can be multiple references to the same object

Since we don’t want to have a concurrent GC, these can
not be sent between tasks

INTRODUCTION
[e]

(e]e}

[e]

e Sometimes we need to be able to send heap values to
other tasks, though

RusT VECTORS STATIC TRAIT METHODS OTHER
000 oe 000 00
oo 00000 000

Rust pointer types (@ and ~)
~-pointers

CONCLUSION

5

29

INTRODUCTION
o

00

o

RusT VECTORS StaTIC TRAIT METHODS OTHER CONCLUSION

000 oe 000 (e]e]
(o]e] 00000 [e]e]e}

Rust pointer types (@ and ~)
~-pointers

Sometimes we need to be able to send heap values to
other tasks, though

~-pointers are unique pointers; the object pointed to is
owned by exactly one pointer

When a ~-pointer is copied, the underlying data is copied
as well

~-pointers can be sent to other tasks by “move”; the
sender must relinquish its reference

INTRODUCTION RusT VECTORS StaTIC TRAIT METHODS OTHER CONCLUSION

(e} 000 [e]e] 000 [e]e]
00 [e]e) ®0000 000
(e}

Vectors

Vector types

e [T] is the type of vectors containing T
o Vectors are a “second class” type: they can only appear
inside some kind of pointer type

¢ In memory, vectors look like

struct vec {
size_t size;
size_t allocated;
char buf[];

INTRODUCTION RusT VECTORS STATIC TRAIT METHODS OTHER CONCLUSION

(e} 000 [e]e] 000 [e]e]
00 [e]e) 0000 000
(e}

Vectors

Some vector code

fn seq_range(lo: uint, hi: uint) -> “[uint] {
let mut v = ~[];
for uint::range(lo, hi) |il| {
vec::push(v, 1i);

}

e v must be the only pointer to the vector, so we can get
away with modifying it in place.

29

INTRODUCTION RusT VECTORS StaTIC TRAIT METHODS OTHER CONCLUSION

[e]
(e]e}
[e]

000 [e]e] 000 [e]e]
[e]e) 0000 000
Vectors
Some vector code

fn seq_range(lo: uint, hi: uint) -> “[uint] {
let mut v = ~[];
for uint::range(lo, hi) |il| {
vec::push(v, 1i);

}

e v must be the only pointer to the vector, so we can get
away with modifying it in place.

o Unfortunately, this can’t work with an ©@-vector.

29

INTRODUCTION RusT VECTORS StaTIC TRAIT METHODS OTHER

(e} 000 [e]e] 000 [e]e]
00 [e]e) 00000 000
(e}

Vectors

How do we build up @-vectors?

e We can't modify or resize an ©@-vector

e But building a vector by pushing elements on the back
seems to be a very natural imperative idiom

CONCLUSION

INTRODUCTION RusT VECTORS StaTIC TRAIT METHODS OTHER CONCLUSION

(e} 000 [e]e] 000 [e]e]
00 [e]e) 00000 000
(e}

Vectors

How do we build up @-vectors?

e We can't modify or resize an ©@-vector

e But building a vector by pushing elements on the back
seems to be a very natural imperative idiom

e Unless we know for sure that there is only one reference...

INTRODUCTION
o

00

o

RusT VECTORS StaTIC TRAIT METHODS OTHER CONCLUSION

000 (e]e] 000 (e]e]
(o]e] 00e00 [e]e]e}

Vectors
How do we build up @-vectors?

We can’t modify or resize an ©-vector

But building a vector by pushing elements on the back
seems to be a very natural imperative idiom

Unless we know for sure that there is only one reference...

Can build up safe abstractions that wrap a reference to
an ©-vector; a wrapper object like Java's ArrayList

]

INTRODUCTION
o

00

o

RusT VECTORS StaTIC TRAIT METHODS OTHER CONCLUSION

000 (e]e] 000 (e]e]
(o]e] 00e00 [e]e]e}

Vectors
How do we build up @-vectors?

We can’t modify or resize an ©-vector

But building a vector by pushing elements on the back
seems to be a very natural imperative idiom

Unless we know for sure that there is only one reference...

Can build up safe abstractions that wrap a reference to
an ©-vector; a wrapper object like Java's ArrayList

This is somewhat unsatisfying, though; | want a
mechanism to construct @-vectors directly

]

INTRODUCTION RusT VECTORS StaTIC TRAIT METHODS OTHER CONCLUSION

[e] 000 (e]e] 000 (e]e]
(e]e} (o]e] 000e0 [e]e]e}
[e]

Vectors
An interface for building @-vectors

fn build<A>(builder: fn(push: fn(+A))) -> @[A];

e build allocates a new vector, and then calls builder
with an argument that can be used to push onto the array

e build has the only reference to the vector being built
until construction is complete

¢ Implemented with unsafe code, but interface is safe

INTRODUCTION RusT VECTORS StaTIC TRAIT METHODS OTHER CONCLUSION

[e] 000 (e]e] 000 (e]e]
(e]e} (o]e] 000e0 [e]e]e}
[e]

Vectors
An interface for building @-vectors

fn build<A>(builder: fn(push: fn(+A))) -> @[A];

e build allocates a new vector, and then calls builder
with an argument that can be used to push onto the array

e build has the only reference to the vector being built
until construction is complete

¢ Implemented with unsafe code, but interface is safe
e This is a third order function!

INTRODUCTION RusT VECTORS StaTIC TRAIT METHODS OTHER CONCLUSION

[e]
(e]e}
[e]

000 (e]e] 000 (e]e]
(o]e] [e]e]ele] } [e]e]e}

Vectors
Using the new interface

fn build<A>(builder: fn(push: fn(+A))) -> @[A];

fn seq_range(lo: uint, hi: uint) -> @[uint] {
do build |push| {
for uint::range(lo, hi) [i] {
push (i) ;
}

e This seems to be a fairly natural idiom

e Lots of other primitives can be built on it

20

29

INTRODUCTION RusT VECTORS StATIC TRAIT METHODS OTHER CONCLUSION

[e] 000 (e]e] @00 (e]e]
(e]e} (o]e] 00000 [e]e]e}
[e]

Traits
What are traits?

o Traits are interfaces that specify a set of methods for
types to implement

e Functions can be parameterized over types that
implement a certain trait

o Like typeclasses in Haskell

INTRODUCTION Rust VECTORS STATIC TRAIT METHODS OTHER CONCLUSION

o] 000 [e]e] (o] le} [e]e]
[e]e] 00 00000 000
o]

Traits

Trait example

trait Show {
fn show() -> “str;
}
impl int : Show {
fn show() -> "str { int::to_str(self) }
}

fn exclaim<T: Show>(x: T) -> “str {
x.show () + ~"iny

o
]

29

INTRODUCTION RusT VECTORS StATIC TRAIT METHODS OTHER CONCLUSION

o] 000 [e]e] ooe [e]e]
[e]e] 00 00000 000
o]

Traits

An annoying limitation

e Traits just contain “methods”, which are called with dot
notation, and require an element of the trait type

e There are plenty of places where you want to be able to
create objects in a type parametric way

o

3/ 29

INTRODUCTION RuST VECTORS StATIC TRAIT METHODS OTHER CONCLUSION

o] 000 [e]e] ooe [e]e]
[e]e] 00 00000 000
o]

Traits

An annoying limitation

e Traits just contain “methods”, which are called with dot
notation, and require an element of the trait type

e There are plenty of places where you want to be able to
create objects in a type parametric way

o Consider a trait for reading in elements of a type from a
string

INTRODUCTION

[e]
(e]e}
[e]

RuST VECTORS StATIC TRAIT METHODS OTHER CONCLUSION

000 (e]e] 000 (e]e]
(o]e] 00000 @00

Static trait methods
A solution

| added a static keyword that can be applied to trait
methods

Static methods do not take a self parameter and can
not be called with dot notation

Instead, they are a regular function in the parent
namespace of the trait

This function is parameterized over the trait type

INTRODUCTION

[e]
(e]e}
[e]

RuST VECTORS StATIC TRAIT METHODS OTHER CONCLUSION

000 (e]e] 000 (e]e]
(o]e] 00000 @00

Static trait methods
A solution

| added a static keyword that can be applied to trait
methods

Static methods do not take a self parameter and can
not be called with dot notation

Instead, they are a regular function in the parent
namespace of the trait

This function is parameterized over the trait type

(This is how all typeclass functions work in Haskell)

INTRODUCTION RusT VECTORS StATIC TRAIT METHODS OTHER CONCLUSION

[e]
(e]e}
[e]

000 (e]e] 000 (e]e]
(o]e] 00000 oeo

Static trait methods
Some example code

trait Read {
static fn read(“str) -> self;

}

read will have the signature:

fn read<T: Read>("str) -> T

INTRODUCTION RusT VECTORS STATIC TRAIT METHODS OTHER CONCLUSION

[e] 000 (e]e] 000 (e]e]
(e]e} (o]e] 00000 ooe
[e]

Static trait methods
Bringing it all together

trait Buildable<A> {
static fn build(builder: fn(push: fn(+A4)))
-> self;

fn seq_range<BT: Buildable<uint>>(lo: uint,
hi: uint) -> BT {
do build () |pushl| {
for uint::range(lo, hi) |il {
push (i) ;
}

e buildable is a very powerful interface

26 /29

INTRODUCTION RusT VECTORS StaTIC TRAIT METHODS

[e]
(e]e}
[e]

000 (e]e] 000
(o]e] 00000 [e]e]e}

Other things

Other projects

o Made major syntax changes to vectors and strings

OTHER
[o)

CONCLUSION

o Added compiler diagnostics to prevent implicit copying of

mutable and heap allocated data

o Explicit self parameters

INTRODUCTION RusT VECTORS StaTIC TRAIT METHODS OTHER CONCLUSION

[e] 000 (e]e] 000 oe
(e]e} (o]e] 00000 [e]e]e}
[e]

Other things
Fized a lot of bugs

41903, #2189, #2351, #2408, #2417, #2422, #2423,

10426, 42446, #2448, #2450, #2462, #2466, #2468,

40473, #2480, #2503, #2531, #2536, #2547, #2552,

42613, #2629, #2630, #2638, #2652, #2705, #2710,

40725, #2730, #2732, #2746, #2747, 42748, #2759,

42792, 42796, #2863, #2906, #2907, #2908, #2922,
#3132, #3191

INTRODUCTION RusT VECTORS STATIC TRAIT METHODS OTHER CONCLUSION

[e] 000 (e]e] 000 (e]e]
(e]e} (o]e] 00000 [e]e]e}
[e]

Conclusion

Rust is a new systems language out of Mozilla Research
that is designed to be fast, concurrent, and safe

| worked on a bunch of different stuff on it this summer

Third order functions are apparently useful for
constructing arrays imperatively

Our traits are now almost as cool as Haskell98's
typeclasses

	Introduction
	Disclaimer
	Goals
	Rust

	Rust
	Design
	Status

	Vectors
	Rust pointer types (@ and)
	Vectors

	Static Trait Methods
	Traits
	Static trait methods

	Other
	Other things

