
Introduction Rust Closures Conclusion

Closures for Rust

Michael Sullivan

August 18, 2011

1 / 25

Introduction Rust Closures Conclusion

Outline

Introduction

Rust

Closures

2 / 25

Introduction Rust Closures Conclusion

Disclaimer

� Rust is under heavy development.

� The things described in this talk may not be true
tomorrow.

� What I discuss and how I present issues reflect my
personal biases in language design.

3 / 25

Introduction Rust Closures Conclusion

Disclaimer

� Rust is under heavy development.

� The things described in this talk may not be true
tomorrow.

� What I discuss and how I present issues reflect my
personal biases in language design.

3 / 25

Introduction Rust Closures Conclusion

Disclaimer

� Rust is under heavy development.

� The things described in this talk may not be true
tomorrow.

� What I discuss and how I present issues reflect my
personal biases in language design.

3 / 25

Introduction Rust Closures Conclusion

Disclaimer

� Rust is under heavy development.

� The things described in this talk may not be true
tomorrow.

� What I discuss and how I present issues reflect my
personal biases in language design.

3 / 25

Introduction Rust Closures Conclusion

Goals
What do we want in a programming language?

� Fast: generates efficient machine code

� Safe: type system provides guarantees that prevent
certain bugs

� Concurrent: easy to build concurrent programs and to
take advantage of parallelism

� “Systemsy”: fine grained control, predictable performance
characteristics

4 / 25

Introduction Rust Closures Conclusion

Goals
What do we want in a programming language?

� Fast: generates efficient machine code

� Safe: type system provides guarantees that prevent
certain bugs

� Concurrent: easy to build concurrent programs and to
take advantage of parallelism

� “Systemsy”: fine grained control, predictable performance
characteristics

4 / 25

Introduction Rust Closures Conclusion

Goals
What do we want in a programming language?

� Fast: generates efficient machine code

� Safe: type system provides guarantees that prevent
certain bugs

� Concurrent: easy to build concurrent programs and to
take advantage of parallelism

� “Systemsy”: fine grained control, predictable performance
characteristics

4 / 25

Introduction Rust Closures Conclusion

Goals
What do we want in a programming language?

� Fast: generates efficient machine code

� Safe: type system provides guarantees that prevent
certain bugs

� Concurrent: easy to build concurrent programs and to
take advantage of parallelism

� “Systemsy”: fine grained control, predictable performance
characteristics

4 / 25

Introduction Rust Closures Conclusion

Goals
What do we want in a programming language?

� Fast: generates efficient machine code

� Safe: type system provides guarantees that prevent
certain bugs

� Concurrent: easy to build concurrent programs and to
take advantage of parallelism

� “Systemsy”: fine grained control, predictable performance
characteristics

4 / 25

Introduction Rust Closures Conclusion

Goals
What do have?

� Firefox is in C++, which is Fast and Systemsy

� ML is (sometimes) fast and (very) safe

� Erlang is safe and concurrent

� Haskell is (sometimes) fast, (very) safe, and concurrent

� Java and C# are fast and safe

5 / 25

Introduction Rust Closures Conclusion

Goals
What do have?

� Firefox is in C++, which is Fast and Systemsy

� ML is (sometimes) fast and (very) safe

� Erlang is safe and concurrent

� Haskell is (sometimes) fast, (very) safe, and concurrent

� Java and C# are fast and safe

5 / 25

Introduction Rust Closures Conclusion

Goals
What do have?

� Firefox is in C++, which is Fast and Systemsy

� ML is (sometimes) fast and (very) safe

� Erlang is safe and concurrent

� Haskell is (sometimes) fast, (very) safe, and concurrent

� Java and C# are fast and safe

5 / 25

Introduction Rust Closures Conclusion

Goals
What do have?

� Firefox is in C++, which is Fast and Systemsy

� ML is (sometimes) fast and (very) safe

� Erlang is safe and concurrent

� Haskell is (sometimes) fast, (very) safe, and concurrent

� Java and C# are fast and safe

5 / 25

Introduction Rust Closures Conclusion

Goals
What do have?

� Firefox is in C++, which is Fast and Systemsy

� ML is (sometimes) fast and (very) safe

� Erlang is safe and concurrent

� Haskell is (sometimes) fast, (very) safe, and concurrent

� Java and C# are fast and safe

5 / 25

Introduction Rust Closures Conclusion

Rust

a systems language
pursuing the trifecta
safe, concurrent, fast

-lkuper

6 / 25

Introduction Rust Closures Conclusion

Rust

Design
Status

7 / 25

Introduction Rust Closures Conclusion

Design
Goals (straight from the docs)

� Compile-time error detection and prevention

� Run-time fault tolerance and containment

� System building, analysis and maintenance affordances

� Clarity and precision of expression

� Implementation simplicity

� Run-time efficiency

� High concurrency

8 / 25

Introduction Rust Closures Conclusion

Design
Goals (straight from the docs)

� Compile-time error detection and prevention

� Run-time fault tolerance and containment

� System building, analysis and maintenance affordances

� Clarity and precision of expression

� Implementation simplicity

� Run-time efficiency

� High concurrency

8 / 25

Introduction Rust Closures Conclusion

Design
Goals (straight from the docs)

� Compile-time error detection and prevention

� Run-time fault tolerance and containment

� System building, analysis and maintenance affordances

� Clarity and precision of expression

� Implementation simplicity

� Run-time efficiency

� High concurrency

8 / 25

Introduction Rust Closures Conclusion

Design
Goals (straight from the docs)

� Compile-time error detection and prevention

� Run-time fault tolerance and containment

� System building, analysis and maintenance affordances

� Clarity and precision of expression

� Implementation simplicity

� Run-time efficiency

� High concurrency

8 / 25

Introduction Rust Closures Conclusion

Design
Goals (straight from the docs)

� Compile-time error detection and prevention

� Run-time fault tolerance and containment

� System building, analysis and maintenance affordances

� Clarity and precision of expression

� Implementation simplicity

� Run-time efficiency

� High concurrency

8 / 25

Introduction Rust Closures Conclusion

Design
Goals (straight from the docs)

� Compile-time error detection and prevention

� Run-time fault tolerance and containment

� System building, analysis and maintenance affordances

� Clarity and precision of expression

� Implementation simplicity

� Run-time efficiency

� High concurrency

8 / 25

Introduction Rust Closures Conclusion

Design
Goals (straight from the docs)

� Compile-time error detection and prevention

� Run-time fault tolerance and containment

� System building, analysis and maintenance affordances

� Clarity and precision of expression

� Implementation simplicity

� Run-time efficiency

� High concurrency

8 / 25

Introduction Rust Closures Conclusion

Design
Goals (straight from the docs)

� Compile-time error detection and prevention

� Run-time fault tolerance and containment

� System building, analysis and maintenance affordances

� Clarity and precision of expression

� Implementation simplicity

� Run-time efficiency

� High concurrency

8 / 25

Introduction Rust Closures Conclusion

Design
Type system features

� Algebraic data type and pattern matching (no null
pointers!)

� Polymorphism: functions and types can have generic type
parameters

� Type inference on local variables

� Lightweight object system

� Data structures are immutable by default

9 / 25

Introduction Rust Closures Conclusion

Design
Other features

� Lightweight tasks with no shared state

� Control over memory allocation

� Move semantics, unique pointers

� Function arguments can be passed by alias

� Typestate system tracks predicates that hold at points in
the program

10 / 25

Introduction Rust Closures Conclusion

Design
...What?

“It’s like C++ grew up, went to grad school, started dating
ML, and is sharing an office with Erlang.”

11 / 25

Introduction Rust Closures Conclusion

Status
rustc

� Self-hosting rust compiler

� Uses LLVM as a backend

� Handles polymorphism through type passing (blech)

� Memory management through automatic reference
counting (eww)

12 / 25

Introduction Rust Closures Conclusion

Status
rustc

� Self-hosting rust compiler

� Uses LLVM as a backend

� Handles polymorphism through type passing (blech)

� Memory management through automatic reference
counting (eww)

12 / 25

Introduction Rust Closures Conclusion

Status
rustc

� Self-hosting rust compiler

� Uses LLVM as a backend

� Handles polymorphism through type passing (blech)

� Memory management through automatic reference
counting (eww)

12 / 25

Introduction Rust Closures Conclusion

Status
rustc

� Self-hosting rust compiler

� Uses LLVM as a backend

� Handles polymorphism through type passing (blech)

� Memory management through automatic reference
counting (eww)

12 / 25

Introduction Rust Closures Conclusion

Status
The catch

� Not ready for prime time

� Lots of bugs and exposed sharp edges

� Language still changing rapidly

13 / 25

Introduction Rust Closures Conclusion

Status
The catch

� Not ready for prime time

� Lots of bugs and exposed sharp edges

� Language still changing rapidly

13 / 25

Introduction Rust Closures Conclusion

Status
The catch

� Not ready for prime time

� Lots of bugs and exposed sharp edges

� Language still changing rapidly

13 / 25

Introduction Rust Closures Conclusion

Closures

What closures are
Closures in rust

14 / 25

Introduction Rust Closures Conclusion

What closures are
Definition

� In civilized languages, functions are first-class values and
are allowed to reference variables in enclosing scopes

� That is, they close over their environments

15 / 25

Introduction Rust Closures Conclusion

What closures are
Example

function add(x) {

return function(y) { return x + y; };

}

var foo = add (42)(1337); // 1379

� Produces a function that adds x to its argument

� Note that the inner function outlives the enclosing
function. x can’t just be stored on the stack.

16 / 25

Introduction Rust Closures Conclusion

What closures are
Another Example

function scale(x, v) {

return map(function(y) { return x * y; },

v);

}

var v = scale(2, [1, 2, 3]); // [2, 4, 6]

� Multiplies every element in an array by some amount

� Note that here the lifetime of the inner function is shorter
than the lifetime of the enclosing one. x could just be
stored on the stack.

17 / 25

Introduction Rust Closures Conclusion

What closures are
Traditional implementation

� Represent functions as a code pointer, environment
pointer pair

� Heap allocate stack frames (or at least the parts that are
closed over)

18 / 25

Introduction Rust Closures Conclusion

What closures are
Traditional implementation

� Represent functions as a code pointer, environment
pointer pair

� Heap allocate stack frames (or at least the parts that are
closed over)

18 / 25

Introduction Rust Closures Conclusion

Closures in rust
Design constraints

� Want to be explicit about when we are allocating memory

� Don’t want to have to heap allocate closures when it isn’t
necessary

19 / 25

Introduction Rust Closures Conclusion

Closures in rust
Solutions

� Have two function types: block and fn

� Values of a block type may not be copied, but can be
passed by alias; this prevents them from escaping

� Values of fn type can be automatically coerced to block
type when passed as function arguments; this allows more
code reuse

� Explicitly state what sort of function you writing

20 / 25

Introduction Rust Closures Conclusion

Closures in rust
Solutions

� Have two function types: block and fn

� Values of a block type may not be copied, but can be
passed by alias; this prevents them from escaping

� Values of fn type can be automatically coerced to block
type when passed as function arguments; this allows more
code reuse

� Explicitly state what sort of function you writing

20 / 25

Introduction Rust Closures Conclusion

Closures in rust
Solutions

� Have two function types: block and fn

� Values of a block type may not be copied, but can be
passed by alias; this prevents them from escaping

� Values of fn type can be automatically coerced to block
type when passed as function arguments; this allows more
code reuse

� Explicitly state what sort of function you writing

20 / 25

Introduction Rust Closures Conclusion

Closures in rust
Solutions

� Have two function types: block and fn

� Values of a block type may not be copied, but can be
passed by alias; this prevents them from escaping

� Values of fn type can be automatically coerced to block
type when passed as function arguments; this allows more
code reuse

� Explicitly state what sort of function you writing

20 / 25

Introduction Rust Closures Conclusion

Closures in rust
Lambda example

fn add(x: int) -> fn(int) -> int {

ret lambda(y: int) -> int { ret x + y; };

}

� lambda produces a fn that closes over its environment by
copying upvars into a heap allocated environment

� Since the variables are copied, changes made to the
variables in the enclosing scope will not be reflected in
the nested function

21 / 25

Introduction Rust Closures Conclusion

Closures in rust
Block example

fn scale(x: int , v: &[int]) -> [int] {

map(block(y: &int) -> int { x * y }, v)

}

� block produces a block that closes over its environment
by storing pointers to the stack locations of the variables
in a stack allocated environment

22 / 25

Introduction Rust Closures Conclusion

Closures in rust
Inference example

fn scale(x: int , v: &[int]) -> [int] {

map ({|&y| x * y}, v)

}

� Provides an abbreviation for block; the argument and
return types are type inferred

� Only allowed to appear as a function argument, making
type inference easy

23 / 25

Introduction Rust Closures Conclusion

Closures in rust
Coercion example

fn add1(x: &int) -> int { x + 1 }

fn increment(v: &[int]) -> [int] {

map(add1 , v)

}

� add1 is coerced to a block when passed to map

24 / 25

Introduction Rust Closures Conclusion

Conclusion

� Rust is a new systems language out of Mozilla Research
that is designed to be fast, concurrent, and safe

� Closures are a tricky design space in languages that want
to be explicit about performance

� Rust approaches the issues by separating functions into
multiple varieties.

25 / 25

	Introduction
	Disclaimer
	Goals
	Rust

	Rust
	Design
	Status

	Closures
	What closures are
	Closures in rust

	Conclusion

