INTRODUCTION
[e]

(e]e}

[e]

RuUsT CLOSURES CONCLUSION

0000 0000
(e} 000000

Closures for Rust

Michael Sullivan

August 18, 2011

Outline
Introduction

Rust

Closures

2/25

Disclaimer

3/25

Disclaimer

¢ Rust is under heavy development.

3/25

INTRODUCTION RuUsT CLOSURES CONCLUSION

0000 0000
(e}

o
(e]e} 000000
[e]

Disclaimer

¢ Rust is under heavy development.

e The things described in this talk may not be true
tomorrow.

RuUsT CLOSURES CONCLUSION

0000 0000
(e} 000000

INTRODUCTION

o
(e]e}
[e]

Disclaimer

¢ Rust is under heavy development.

e The things described in this talk may not be true
tomorrow.

e What | discuss and how | present issues reflect my
personal biases in language design.

o

Goals
What do we want in a programming language?

1/25

INTRODUCTION RuUsT CLOSURES CONCLUSION

0000 0000
(e}

[e]
[Jo} 000000
[e]

Goals
What do we want in a programming language?

o Fast: generates efficient machine code

)

INTRODUCTION RuUsT CLOSURES CONCLUSION

0000 0000
(e}

[e]
[Jo} 000000
[e]

Goals
What do we want in a programming language?

o Fast: generates efficient machine code

o Safe: type system provides guarantees that prevent
certain bugs

INTRODUCTION RusTt CLOSURES

[e]
[Jo}
[e]

0000 0000
(e} 000000

Goals
What do we want in a programming language?

o Fast: generates efficient machine code

o Safe: type system provides guarantees that prevent
certain bugs

o Concurrent: easy to build concurrent programs and to
take advantage of parallelism

CONCLUSION

INTRODUCTION RuUsT CLOSURES CONCLUSION
0000 0000
(e}

[e]
[Jo} 000000
[e]

Goals
What do we want in a programming language?

Fast: generates efficient machine code

Safe: type system provides guarantees that prevent
certain bugs

o Concurrent: easy to build concurrent programs and to
take advantage of parallelism

“Systemsy": fine grained control, predictable performance
characteristics

INTRODUCTION RuUsT CLOSURES CONCLUSION

0000 0000
(e}

[e]
oe 000000
[e]

Goals
What do have?

o Firefox is in C++, which is Fast and Systemsy

o

INTRODUCTION RuUsT CLOSURES CONCLUSION

0000 0000
(e}

[e]
oe 000000
[e]

Goals
What do have?

o Firefox is in C++, which is Fast and Systemsy
e ML is (sometimes) fast and (very) safe

INTRODUCTION RuUsT CLOSURES CONCLUSION

0000 0000
(e}

[e]
oe 000000
[e]

Goals
What do have?

o Firefox is in C++, which is Fast and Systemsy
e ML is (sometimes) fast and (very) safe
e Erlang is safe and concurrent

INTRODUCTION RuUsT CLOSURES CONCLUSION

0000 0000
(e}

[e]
oe 000000
[e]

Goals
What do have?

Firefox is in C++, which is Fast and Systemsy

ML is (sometimes) fast and (very) safe

Erlang is safe and concurrent

Haskell is (sometimes) fast, (very) safe, and concurrent

INTRODUCTION RuUsT CLOSURES CONCLUSION

0000 0000
(e}

[e]
oe 000000
[e]

Goals
What do have?

Firefox is in C++, which is Fast and Systemsy

ML is (sometimes) fast and (very) safe

Erlang is safe and concurrent

Haskell is (sometimes) fast, (very) safe, and concurrent

Java and C# are fast and safe

INTRODUCTION RuUsT CLOSURES CONCLUSION

0000 0000
(e}

[e]
(e]e} 000000
o

Rust

a systems language

pursuing the trifecta

safe, concurrent, fast
-lkuper

Rust

Design
Status

7/25

Design
Goals (straight from the docs)

8/25

INTRODUCTION RusTt CLOSURES CONCLUSION

[e] @000 0000
(e]e} (e} 000000
[e]

Design
Goals (straight from the docs)

e Compile-time error detection and prevention

INTRODUCTION RusTt CLOSURES CONCLUSION

[e] @000 0000
(e]e} (e} 000000
[e]

Design
Goals (straight from the docs)

e Compile-time error detection and prevention

e Run-time fault tolerance and containment

INTRODUCTION RusT CLOSURES CONCLUSION

[e] @000 0000
(e]e} (e} 000000
[e]

Design
Goals (straight from the docs)

e Compile-time error detection and prevention
e Run-time fault tolerance and containment

e System building, analysis and maintenance affordances

INTRODUCTION RusT CLOSURES CONCLUSION

[e] @000 0000
(e]e} (e} 000000
[e]

Design
Goals (straight from the docs)

Compile-time error detection and prevention

Run-time fault tolerance and containment

System building, analysis and maintenance affordances

Clarity and precision of expression

INTRODUCTION RusT CLOSURES CONCLUSION

[e] @000 0000
(e]e} (e} 000000
[e]

Design
Goals (straight from the docs)

Compile-time error detection and prevention

Run-time fault tolerance and containment

System building, analysis and maintenance affordances

Clarity and precision of expression

Implementation simplicity

INTRODUCTION RusT CLOSURES CONCLUSION

[e] @000 0000
(e]e} (e} 000000
[e]

Design
Goals (straight from the docs)

Compile-time error detection and prevention

Run-time fault tolerance and containment

System building, analysis and maintenance affordances

Clarity and precision of expression

Implementation simplicity

Run-time efficiency

INTRODUCTION RusT CLOSURES CONCLUSION

[e] @000 0000
(e]e} (e} 000000
[e]

Design
Goals (straight from the docs)

Compile-time error detection and prevention

Run-time fault tolerance and containment

System building, analysis and maintenance affordances

Clarity and precision of expression

Implementation simplicity

Run-time efficiency

High concurrency

INTRODUCTION RusT CLOSURES CONCLUSION
o 0®00 0000
00

(e]e} 000000
[e]

Design
Type system features

Algebraic data type and pattern matching (no null
pointers!)

Polymorphism: functions and types can have generic type
parameters

Type inference on local variables

Lightweight object system

Data structures are immutable by default

INTRODUCTION RusT CLOSURES CONCLUSION
o 0000 0000

00 00 000000

o

Design
Other features

Lightweight tasks with no shared state

Control over memory allocation

» Move semantics, unique pointers

Function arguments can be passed by alias

Typestate system tracks predicates that hold at points in
the program

INTRODUCTION RusTt CLOSURES CONCLUSION

[e]
(e]e}
[e]

oooe 0000
(e} 000000

Design
... What?

“It's like C++ grew up, went to grad school, started dating
ML, and is sharing an office with Erlang.”

Status
rustc

¢ Self-hosting rust compiler

12/25

INTRODUCTION RusTt CLOSURES CONCLUSION

o] 0000 0000
[e]e] 0 000000
o]
Status
rustc

¢ Self-hosting rust compiler
o Uses LLVM as a backend

INTRODUCTION RusT CLOSURES CONCLUSION

[e] 0000 0000
(e]e} o0 000000
[e]

Status
rustc

¢ Self-hosting rust compiler
e Uses LLVM as a backend
e Handles polymorphism through type passing (blech)

INTRODUCTION RusT CLOSURES CONCLUSION

[e] 0000 0000
(e]e} o0 000000
[e]

Status
rustc

Self-hosting rust compiler
Uses LLVM as a backend
Handles polymorphism through type passing (blech)

Memory management through automatic reference
counting (eww)

Status
The catch

» Not ready for prime time

13/25

INTRODUCTION RusTt CLOSURES CONCLUSION

(e} 0000 0000
00 oe 000000
(e}
Status
The catch

o Not ready for prime time

o Lots of bugs and exposed sharp edges

INTRODUCTION RusT CLOSURES CONCLUSION

[e] 0000 0000
(e]e} oe 000000
[e]

Status
The catch

o Not ready for prime time
o Lots of bugs and exposed sharp edges
e Language still changing rapidly

Closures

What closures are
Closures in rust

14/25

INTRODUCTION RuUsT CLOSURES CONCLUSION

[e]
(e]e}
[e]

0000 @000
(e} 000000

What closures are
Definition

e In civilized languages, functions are first-class values and
are allowed to reference variables in enclosing scopes

e That is, they close over their environments

INTRODUCTION RuUsT CLOSURES

[e]
(e]e}
[e]

0000 0000
[e]e] 000000
What closures are
Ezxample

function add(x) {
return function(y) { return x + y; };

}
var foo = add(42)(1337); // 1379

e Produces a function that adds x to its argument

o Note that the inner function outlives the enclosing
function. x can't just be stored on the stack.

CONCLUSION

CLOSURES CONCLUSION

RuUsT

INTRODUCTION
0000

[e]
(e]e}
[e]

0000
(e} 000000

What closures are
Another Example

function scale(x, v) {
return map (function(y) { return x * y; 1},

v);

}
var v = scale(2, [1, 2, 31); // [2, 4, 6]

o Multiplies every element in an array by some amount

o Note that here the lifetime of the inner function is shorter
than the lifetime of the enclosing one. x could just be
stored on the stack.

INTRODUCTION RuUsT CLOSURES CONCLUSION

[e] 0000 oooe
(e]e} (e} 000000
[e]

What closures are
Traditional implementation

o Represent functions as a code pointer, environment
pointer pair

INTRODUCTION RuUsT CLOSURES CONCLUSION

[e] 0000 oooe
(e]e} (e} 000000

[e]

What closures are
Traditional implementation

o Represent functions as a code pointer, environment
pointer pair

e Heap allocate stack frames (or at least the parts that are
closed over)

]

INTRODUCTION RuUsT CLOSURES CONCLUSION

[e] 0000 0000
(e]e} (e} ®00000
[e]

Closures in rust
Design constraints

o Want to be explicit about when we are allocating memory

e Don't want to have to heap allocate closures when it isn't
necessary

INTRODUCTION RuUsT CLOSURES CONCLUSION

[e] 0000 0000
(e]e} (e} O@0000
[e]

Closures in rust
Solutions

¢ Have two function types: block and fn

INTRODUCTION RuUsT CLOSURES CONCLUSION

[e] 0000 0000
(e]e} (e} O@0000
[e]

Closures in rust
Solutions

¢ Have two function types: block and fn

e Values of a block type may not be copied, but can be
passed by alias; this prevents them from escaping

INTRODUCTION RuUsT CLOSURES CONCLUSION

[e] 0000 0000
(e]e} (e} O@0000

[e]

Closures in rust
Solutions

Have two function types: block and fn

Values of a block type may not be copied, but can be
passed by alias; this prevents them from escaping

Values of fn type can be automatically coerced to block
type when passed as function arguments; this allows more
code reuse

INTRODUCTION RuUsT CLOSURES CONCLUSION

[e] 0000 0000
(e]e} (e} O@0000

[e]

Closures in rust
Solutions

Have two function types: block and fn

Values of a block type may not be copied, but can be
passed by alias; this prevents them from escaping

Values of fn type can be automatically coerced to block
type when passed as function arguments; this allows more
code reuse

Explicitly state what sort of function you writing

INTRODUCTION RuUsT CLOSURES CONCLUSION

[e] 0000 0000
(e]e} (e} 00e000

[e]

Closures in rust
Lambda example

fn add(x: int) -> fn(int) -> int {
ret lambda(y: int) -> int { ret x + y; };

3

e lambda produces a fn that closes over its environment by
copying upvars into a heap allocated environment

e Since the variables are copied, changes made to the
variables in the enclosing scope will not be reflected in
the nested function

INTRODUCTION RuUsT CLOSURES CONCLUSION

[e] 0000 0000
(e]e} (e} [e]e]e] le]e]
[e]

Closures in rust
Block example

fn scale(x: int, v: &[int]l) -> [int] {
map (block(y: &int) -> int { x * y }, v)
}

e block produces a block that closes over its environment
by storing pointers to the stack locations of the variables
in a stack allocated environment

INTRODUCTION

[e]
(e]e}
[e]

RusTt CLOSURES CONCLUSION

0000 0000
(e} O000e0

Closures in rust
Inference example

fn scale(x: int, v: &[int]) -> [int] {
map ({l&y| x * y}, v)
}

e Provides an abbreviation for block; the argument and
return types are type inferred

e Only allowed to appear as a function argument, making
type inference easy

INTRODUCTION RuUsT CLOSURES CONCLUSION

[e] 0000 0000
(e]e} (e} O0000e
[e]

Closures in rust
Coercion example

fn addl(x: &int) -> int { x + 1 }

fn increment(v: &[int]) -> [int] {
map (addl, v)

}

e addl is coerced to a block when passed to map

)
o

INTRODUCTION RuUsT CLOSURES CONCLUSION

[e] 0000 0000
(e]e} (e} 000000
[e]

Conclusion

o Rust is a new systems language out of Mozilla Research
that is designed to be fast, concurrent, and safe

e Closures are a tricky design space in languages that want
to be explicit about performance

e Rust approaches the issues by separating functions into
multiple varieties.

	Introduction
	Disclaimer
	Goals
	Rust

	Rust
	Design
	Status

	Closures
	What closures are
	Closures in rust

	Conclusion

