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¢ Rust is under heavy development.

e The things described in this talk may not be true
tomorrow.

e What | discuss and how | present issues reflect my
personal biases in language design.
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Goals
What do we want in a programming language?

Fast: generates efficient machine code

Safe: type system provides guarantees that prevent
certain bugs

o Concurrent: easy to build concurrent programs and to
take advantage of parallelism

“Systemsy": fine grained control, predictable performance
characteristics
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Goals
What do have?

Firefox is in C++, which is Fast and Systemsy

ML is (sometimes) fast and (very) safe

Erlang is safe and concurrent

Haskell is (sometimes) fast, (very) safe, and concurrent

Java and C# are fast and safe
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Rust

a systems language

pursuing the trifecta

safe, concurrent, fast
-lkuper
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Design
Goals (straight from the docs)

Compile-time error detection and prevention

Run-time fault tolerance and containment

System building, analysis and maintenance affordances

Clarity and precision of expression

Implementation simplicity

Run-time efficiency

High concurrency
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Design
Type system features

Algebraic data type and pattern matching (no null
pointers!)

Polymorphism: functions and types can have generic type
parameters

Type inference on local variables

Lightweight object system

Data structures are immutable by default
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Design
Other features

Lightweight tasks with no shared state

Control over memory allocation

» Move semantics, unique pointers

Function arguments can be passed by alias

Typestate system tracks predicates that hold at points in
the program
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Design
... What?

“It's like C++ grew up, went to grad school, started dating
ML, and is sharing an office with Erlang.”
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Status
rustc

Self-hosting rust compiler
Uses LLVM as a backend
Handles polymorphism through type passing (blech)

Memory management through automatic reference
counting (eww)
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Status
The catch

o Not ready for prime time
o Lots of bugs and exposed sharp edges
e Language still changing rapidly
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What closures are
Definition

e In civilized languages, functions are first-class values and
are allowed to reference variables in enclosing scopes

e That is, they close over their environments
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Ezxample

function add(x) {
return function(y) { return x + y; };

}
var foo = add(42)(1337); // 1379

e Produces a function that adds x to its argument

o Note that the inner function outlives the enclosing
function. x can't just be stored on the stack.

CONCLUSION
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What closures are
Another Example

function scale(x, v) {
return map (function(y) { return x * y; 1},

v);

}
var v = scale(2, [1, 2, 31); // [2, 4, 6]

o Multiplies every element in an array by some amount

o Note that here the lifetime of the inner function is shorter
than the lifetime of the enclosing one. x could just be
stored on the stack.
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What closures are
Traditional implementation

o Represent functions as a code pointer, environment
pointer pair

e Heap allocate stack frames (or at least the parts that are
closed over)

]
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Closures in rust
Design constraints

o Want to be explicit about when we are allocating memory

e Don't want to have to heap allocate closures when it isn't
necessary
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Closures in rust
Solutions

Have two function types: block and fn

Values of a block type may not be copied, but can be
passed by alias; this prevents them from escaping

Values of fn type can be automatically coerced to block
type when passed as function arguments; this allows more
code reuse

Explicitly state what sort of function you writing
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Closures in rust
Lambda example

fn add(x: int) -> fn(int) -> int {
ret lambda(y: int) -> int { ret x + y; };

3

e lambda produces a fn that closes over its environment by
copying upvars into a heap allocated environment

e Since the variables are copied, changes made to the
variables in the enclosing scope will not be reflected in
the nested function
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Closures in rust
Block example

fn scale(x: int, v: &[int]l) -> [int] {
map (block(y: &int) -> int { x * y }, v)
}

e block produces a block that closes over its environment
by storing pointers to the stack locations of the variables
in a stack allocated environment
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Closures in rust
Inference example

fn scale(x: int, v: &[int]) -> [int] {
map ({l&y| x * y}, v)
}

e Provides an abbreviation for block; the argument and
return types are type inferred

e Only allowed to appear as a function argument, making
type inference easy
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Closures in rust
Coercion example

fn addl(x: &int) -> int { x + 1 }

fn increment(v: &[int]) -> [int] {
map (addl, v)

}

e addl is coerced to a block when passed to map

)
o
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Conclusion

o Rust is a new systems language out of Mozilla Research
that is designed to be fast, concurrent, and safe

e Closures are a tricky design space in languages that want
to be explicit about performance

e Rust approaches the issues by separating functions into
multiple varieties.
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