
A note on this paper draft:

This paper, originally written in 2014, presents an approach for
reducing the quantity and size of type information in intermedi-
ate languages of a type-directed compiler. The technique presented
works, and succeeds at that goal, and I believe it is a technique of
interest. It is also accompanied by what I believe is an interesting
proof that reconstructability of types is preserved by our closure
conversion algorithm.

The snag is that the overarching goal of reducing the size of
type information is to improve the speed of the compiler. I did
not originally collect speed comparision numbers because produc-
ing apples-to-apples comparision numbers would have required du-
plicating much of the compiler with similar passes that preserved
types in a more traditional way.

During review, we (rightly!) received pushback about this, and
in 2016 I eventually sucked it up and built the passes needed to do

a comparsion. Unfortunately, the results were that, when including
the cost of reconstructing types at the end, the “forgetful” approach
was consistently slower, often by a factor of two.

This is not necessarily a nail in the coffin of the idea, as there
may well be substantial room to optimize, but it does not feel very
promising to me anymore. Since this came after my main focus had
moved on to other research, I didn’t investigate further optimization
potential. Since I felt that the prospects of publishing a paper about
how I wrote a slow compiler were slim, I let the whole thing drop.

Because the compiler frontend contains solution code for a class
that my co-author teaches, I haven’t released the code, but I can
probably share it upon request.

-Michael J. Sullivan

Forgetful Type-Directed Compilation
Reducing the overhead of type information through type reconstruction

Michael J. Sullivan Karl Crary
Carnegie Mellon University
{mjsulliv, crary}@cs.cmu.edu

Abstract
Type-preserving compilation, in which type information is pre-
served in the intermediate languages of a compiler, has a number
of benefits, such as enabling generation of certified code, making
it easier to catch compiler bugs, and facilitating type-directed opti-
mization. However, type-preserving compilation is tricky to imple-
ment efficiently, as the manipulation of type information can be-
come very costly, and many techniques rely on novel and complex
type theory.

We present forgetful type-directed compilation, an alternate ap-
proach that focuses on vastly reducing the amount of type infor-
mation rather than managing the cost of manipulating it. This is
accomplished by removing much of the type information while
always maintaining the property that we can recover the types
through type reconstruction. Types are eliminated through a “type
forgetting” algorithm and through the construction of translations
that avoid introducing many new annotations. As implemented in
our prototype compiler, forgetful type-directed compilation reduces
the amount of type information by more than 95% on our test cases.

1. Introduction
Type-preserving compilation, in which type information is pre-
served in the intermediate languages of a compiler, has a number of
benefits. It enables the generation of certified code [7], helps com-
piler development by catching bugs, and allows the implementation
of type-directed optimizations.

A major difficulty in implementing type-preserving compilation
is managing the size of type information. As high-level constructs
such as algebraic datatypes, modules, polymorphism, and closures
are compiled away into lower level constructs with less structure,
more type information is needed in order to properly typecheck the
intermediate language programs. This can lead to an explosion of
type annotations, causing the cost of managing type information to
dominate compilation time. In addition, Shao et al. argue that when
compiling ML-like languages with features like polymorphic types
and modules it is necessary to represent identical types by the same

[Copyright notice will appear here once ’preprint’ option is removed.]

in-memory structure in order to get acceptable performance; main-
taining and taking advantage of this sharing, however, pervasively
influences the construction of translation passes. [12].

In forgetful type-directed compilation, a new methodology for
implementing type-preserving compilers, we take a radically differ-
ent approach. While many techniques (including Shao et al.’s) for
type-preserving compilation seek to manage the cost of manipulat-
ing types, we instead attempt to eliminate most of the type infor-
mation. In forgetful type-directed compilation, we “forget” many of
the type annotations that appear in intermediate language programs
and avoid introducing new ones during translations while main-
taining the ability to recover all of the type information using type
reconstruction. Additionally, while many techniques to manage the
cost of handling types rely on novel intermediate languages with
clever but sophisticated type theory, forgetful type-directed compi-
lation does not; we use fairly conventional typed lambda calculi as
our intermediate languages.

The main challenge is that type reconstruction for our interme-
diate languages is quite difficult (in fact, undecidable). Reconstruc-
tion is done using an algorithm based on higher-order pattern uni-
fication [11], and can correctly reconstruct a subset of well-typed
programs while failing on others. We then maintain the invariant
that at every stage during compilation, we can reproduce all of the
elided type annotations in the program. One of the key insights of
forgetful type-directed compilation is that we can restrict ourselves
to the subset of programs that we can properly reconstruct without
actually having a theory that tells us which programs fall into that
subset.

The combination of the type forgetting algorithm and transla-
tions that do not introduce new type annotations is very effective at
reducing the amount of type information: in our test cases, we re-
duce the amount of type information by more than 95%, more than
is saved by ensuring physical sharing of identical types.

The main contributions of this paper are:

• We present a syntax-directed typed closure conversion algo-
rithm that introduces very few new type annotations (Sec-
tion 4.1), and prove that the translation preserves type recon-
structability (Section 4.2). We focus on closure conversion be-
cause we feel it is the trickiest of the translations we imple-
mented (in terms of reconstructability) and because it is a good
showcase of avoiding the introduction of new annotations. We
believe that the proof itself is an interesting contribution, as we
are not aware of any previous results of this sort.

• While much of the benefit of forgetful type-directed compila-
tion comes from not adding new annotations during compila-
tion, we can also reduce the number of annotations at the be-
ginning of compilation. We present an algorithm for removing
type annotations from a program such that we can still recon-
struct the types (Section 5). The algorithm is largely indepen-

Forgetful Type-Directed Compilation 2 2021/11/3

dent of the structure of the language; the main requirement is
that inference be expressible as a higher-order unification prob-
lem.

• We discuss our experience using forgetful type-directed com-
pilation in an in-progress prototype compiler for Standard ML
(Section 6).

2. Overview
We now present an informal introduction to our techniques in the
context of a typed lambda calculus similar to what might be used
as an intermediate language.

As a somewhat contrived example of a term with erased type
annotations, consider the term (where ◦ represents an erased type
annotation; not necessarily all the same one):

let f = λx: ◦ . λy: ◦ . 〈x, y〉 in
let g = λn: ◦ . f n true in
leth = λb: ◦ . f 1 b in
〈g, h〉

All of the the annotations in this term are reconstructable. The
function g passes a boolean constant as f ’s second argument and
h passes an integer as its first, which allows us to determine that
the type annotation for x is int and y is bool. From that we can
determine the annotations on n and b as well. (This example does
not use any universal or existential types, and so can be easily
reconstructed just using first-order unification.)

2.1 Closure Conversion
To demonstrate how type forgetting is used in the compiler, we
present a forgetful closure-conversion translation. Closure conver-
sion is an important part of compiling functional programming lan-
guages and poses some problems for type-directed compilers.

In closure conversion, we rewrite the program so that lambdas
are closed terms. To do this, we modify each lambda to take, as
an additional argument, a tuple containing its environment of free
variables; we then pair this rewritten lambda with an environment
tuple of the variables.

For example, the following simple function with free variables
n and s

λx:int. x < (strlen s) + n

could be rewritten to

〈(λp:int× (string × int). let 〈x, 〈y, z〉〉 = p in
x < strlen y + z),

〈s, n〉〉

This, however, rewrites a lambda of type int → bool into one of
type int × (string × int) → bool. This is problematic because
it implies that the translated type of a function depends on the
context it appears in; to make the translation work out, we follow
Minamide et al. [6] in wrapping functions in an existential type,
rewriting functions of type A → B into existential packages of
type ∃αe.(A×αe → B)×αe. The example above would then be
translated into

pack[string × int,
〈(λp:int× (string × int). let 〈x, 〈y, z〉〉 = p in

x < strlen y + z),
〈s, n〉〉]

as ∃αe.(int× αe → bool)× αe
This works, but we have introduced a number of new type

annotations that were not present in the original. The lambda and
the pack each contain an annotation for the environment, which
doesn’t correspond to anything in the source program. We also
now annotate the return type of the function, when previously it

was determined by the function body. In forgetful type-directed
compilation, we want to produce something like

pack[◦,
〈(λp: ◦ . let 〈x, 〈y, z〉〉 = p in

x < strlen y + z),
〈s, n〉〉]

as ∃αe.(int× αe → ◦)× αe
where ◦ represents an annotation that we have eliminated but wish
to be able to reconstruct.

Intuitively, it seems like we should be able to reconstruct all
of the elided type annotations. We know that 〈s, n〉 has the type
string × int; noting that this lines up with the final αe in the
annotation on the pack should tell us that string × int must be
the type being packed. Knowing this, from the annotation on the
pack we can deduce that the lambda must have the argument type
int × (string × int). From that we can determine that the result
type of the function must be bool, which lets us reconstruct the
last annotation. In Section 4.1 we will formalize our description
of closure conversion and prove that this intuition that it preserves
reconstructability is correct.

2.2 Type Forgetting
While much of the benefit of type-erased intermediate languages
comes from being able to elide new type annotations introduced by
translations, it is also helpful to remove unnecessary annotations at
an early stage of compilation. To do this, we use a simple “type
forgetting” algorithm. The key insight of the algorithm is that we
can determine what is inferrable by trying to infer the program with
all the annotations removed and seeing what we can recover. We
then find an annotation we could not infer, add it back in, re-solve
our constraints with the additional information, and repeat until all
of the annotations can either be inferred or have been added back
in.

This strategy is very general — it can be applied to any language
for which type inference is expressible as a higher-order unification
problem. It is also quite brute force: it does not take advantage
of any knowledge or theory about what type annotations might be
necessary.

3. Language and Type Reconstruction
We formalize forgetful type-directed compilation in the context of
System Fω , the higher-order polymorphic lambda calculus. Our
variant of the language has higher kinds, universal and existential
types, and n-ary products. Type inference on our intermediate lan-
guages is done by generating higher-order unification problems. To
that end, the representation of type constructors is chosen to facili-
tate higher-order unification.

In this section, we discuss our representation of type construc-
tors, the formalization of and algorithm for higher-order unification
we use, and how we generate higher-order unification problems to
implement type inference. The material in this section is not novel,
but is included to make the presentation self-contained.

3.1 The Type System
The type constructor level of the language is a simply typed lambda
calculus. The constructor level does not have any special forms for
the types of the language; instead it uses type constructor constants
to form types. For example, (→) is a constant of kind T→ T→ T
andA→ B is expressed as (→)AB. Likewise, there are constants
(∀κ) of kind (κ → T) → T for every kind κ; thus ∀α:κ.A is
expressed as (∀κ)(λα.A).

Two notable features of the constructor level of our language
are chosen to match the formalism of the unification algorithm that
we use. First, we restrict attention to type constructors in canonical

Forgetful Type-Directed Compilation 3 2021/11/3

form, which are constructors that are fully η-expanded and have
no β-redexes. We take advantage of the observation by Watkins
et al. [14] that a hereditary substitution operation can be defined
that reduces any β-redexes that would be introduced by a regular
substitution.

Second, we take advantage of contextual modal type theory’s [8]
notion of modal variables to represent metavariables (also called
unification variables). A modal variable X acts as a placeholder
where some other type, possibly containing free variables, can be
substituted. Each modal variable is associated with a type context
∆ that indicates what variables can occur free in it. Modal variables
and the type contexts associated with them are tracked in a modal
context Ξ. When modal variables appear in types, it is always in the
form X[σ], where σ is a substitution that maps from the ambient
context to the context ofX . Substitutions can contain both type-for-
variable substitutions and variable-for-variable renamings; renam-
ings will be used to define the key notion of pattern substitutions.
We will write id∆ to mean the identity substitution for all variables
that appear in ∆. To reduce clutter, we will usually simply write X
to mean X[id∆] when the surrounding context is ∆.

The syntax is as follows:

Kinds κ ::= T | κ→ κ
Normal Types A,B,C ::= λα.A | R
Atomic Types R ::= H | RA | X[σ]

Heads H ::= α | c

Substitutions σ, s ::= · | σ, (α/β) | σ, (A/α)
Type Contexts ∆ ::= · | ∆, α:κ

Modal Contexts Ξ ::= · | Ξ, X :: (∆ ` T)

Types are checked under a type context ∆ and a modal context
Ξ. The main kinding judgments are

Ξ; ∆ ` A⇐ κ Ξ; ∆ ` R⇒ κ

“A checks against kind κ” and “R synthesizes kind κ”. To reduce
clutter, we generally elide the Ξ.

We present the kinding rules below. One key rule is the checking
rule for the case when an atomic type appears as a normal type: this
is allowed, but only at base kind. This enforces eta-long form by
requiring a constant or variable to be fully applied before it can be
included into a normal type.

The other key rule is the rule for checking modal variables. This
rule depends on the substitution checking judgement ∆ ` σ :
∆′ which states that the substitution σ will map terms under the
context ∆′ to terms under the context ∆. A use of a modal variable
X[σ] is well typed if X exists in the modal context Ξ at some
context ∆′ and σ maps from ∆′ to the ambient context ∆.

X :: (∆′ ` T) ∈ Ξ ∆ ` σ : ∆′

Ξ; ∆ ` X[σ]⇒ T
∆ ` R⇒ T
∆ ` R⇐ T

α:κ ∈ ∆
∆ ` α⇒ κ

∆ ` R⇒ κ→ κ′ ∆ ` A⇐ κ

∆ ` RA⇒ κ′

∆, α:κ1 ` A⇐ κ2

∆ ` λα.A⇐ κ1 → κ2

∆ ` · : ·
∆ ` A⇐ κ ∆ ` σ : ∆′

∆ ` σ, (A/α) : (∆′, α:κ)

β:κ ∈ ∆ ∆ ` σ : ∆′

∆ ` σ, (β/α) : (∆′, α:κ)

We define the hereditary substitution operation [B/α]A which
substitutes the canonical type B for the variable α in a canonical
type A, producing a canonical type. To handle the case where α
is the head, we define the auxiliary operation [A | B1, · · · , Bn]

which gives the β-reduction of A when applied to a list of argu-
ments.

[B/α](α A1 · · · An) = [B | [B/α]A1, . . . , [B/α]An]

[B/α](H A1 · · · An) = H ([B/α]A1) · · · ([B/α]An)

where H 6= α

[B/α](λβ.A) = λβ.[B/α]A

[λα.A | B1, B2, . . . , Bn] = [[B1/α]A | B2, . . . , Bn]

[R | ·] = R

As shown by Watkins [14] using an induction metric reminis-
cent of cut elimination, because the inputs are well kinded, these
functions are total.

In order to handle the modal variable case, we also define
[B/α]σ, which acts on a substitution.

[B/α](X[σ]) = X[[B/α]σ]

[B/α](σ, (α/β)) = [B/α]σ, (B/β)

[B/α](σ, (γ/β)) = [B/α]σ, (γ/β) where γ 6= α

[B/α](σ, (A/β)) = [B/α]σ, ([B/α]A/β)

We also need the operation [σ]A, which applies each individual
substitution in σ toA, and the operation [R/X]A, which finds each
subterm X[σ] of A and replaces it with [σ]R.

3.2 Unification
We borrow both our formalization of higher-order unification prob-
lems and our constraint simplification algorithm for solving it from
Reed [11]. Much of the presentation is directly adapted from Reed
as well. A unification problem is a system ∃Ξ � P where

Equation Sets P ::= > | P ∧Q
Equations Q ::= A

.
= A′ | R .

= R′

| X .
= R | X ← R

Intuitively, ∃Ξ � P asks whether there exist instantiations
of the metavariables in Ξ such that all of the equations in P are
satisfied. Equation sets are considered up-to the reordering of the
equations in them. The equationX ← R indicates thatX has been
solved for R and instantiated in the rest of the problem, while in
X

.
= R, R may contain uses of X , preventing instantiation. When

it is unambiguous, we will often write P instead of ∃Ξ � P . We
freely drop solved variables from unification problems if we are no
longer interested in them.

The key difficulty in higher-order unification is in handling con-
straints of the form X[σ]

.
= R. In general, it is difficult (undecid-

able) to directly solve for X . If the substitution had an inverse σ−1

such that [σ−1]σ = id, then we could apply the inverse substitution
to both sides of the equation to yield X .

= [σ−1]R. While substitu-
tions do not, in general, have inverses, there exists a class of them,
called pattern substitutions, that do.

The key feature of this constraint simplification algorithm for
higher-order unification, then, is the inversion of pattern substitu-
tions: a pattern substitution (written ξ) maps each variable in its do-
main to a distinct bound variable. Because each variable is mapped
to a different replacement variable, we can invert a pattern substi-
tution simply by reversing all of the mappings. We define the inver-
sion operation ξ−1

Γ such that it contains (y/x) for every (x/y) ∈ ξ
and (/x) for any x in Γ not covered by the above. (We extend the
syntax of normal types with , which represents an undefined type
that must not appear in a solution.)

We write Ẑ{A} to indicate a member of some syntactic class Z
(in particular, we will useQ) with a hole for a typeA to be plugged
in.

Forgetful Type-Directed Compilation 4 2021/11/3

(we assume that Γ = ∆; Ψ)
V (Γ, x, A) = A

.
= Γ(x) (provided that x ∈ Γ)

V (Γ, λx:B. e,A) = ∃Y :: (∆ ` T) � (A
.
= B → Y) ∧ V (Γ⊕ x:B, e, Y)

V (Γ, e1 e2, A) = ∃X :: (∆ ` T) � V (Γ, e1, X → A) ∧ V (Γ, e2, X)

V (Γ,Λα:κ.e,A) = ∃F :: (∆, α:κ ` T) � (A
.
= (∀κ) (λα.F)) ∧ V (Γ⊕ α:κ, e, F)

V (Γ, e [B]κ, A) = ∃F :: (∆, α:κ ` T) � (A
.
= F [id∆, (B/α)]) ∧ V (Γ, e, (∀κ)(λα.F))

V (Γ, 〈e1, . . . en〉, A) = ∃X1, . . . , Xn :: (∆ ` T) � (A
.
= (×n)X1 . . . Xn) ∧ V (Γ, e1, X1) ∧ · · · ∧ V (Γ, en, Xn)

V (Γ, let 〈x1, . . . xn〉 = e1 in e2, A) = ∃X1, . . . , Xn :: (∆ ` T) �

V (Γ, e1, (×n)X1 . . . Xn) ∧
V (Γ⊕ x1:X1 ⊕ · · · ⊕ xn:Xn, e2, A)

Figure 1. Type inference

(we assume that Γ = ∆; Ψ)

V (∆; Ψ, λ̂x:B. e,A) = ∃Y :: (∆ ` T) � (A
.
= B → Y) ∧ V (∆;x:B, e, Y)

V (Γ, letx = e1 in e2, A) = ∃X :: (∆ ` T) � V (Γ, e1, X) ∧ V (Γ⊕ x:X, e2, A)

V (Γ, packκ[B, e] asC,A) = ∃X :: (∆, α:κ ` T) �

(A
.
= C) ∧ (C

.
= (∃κ) (λα.X)) ∧ V (Γ, e,X[id∆, (B/α)])

V (Γ, unpackκ(e1, α.x.e2), A) = ∃X :: (∆, α:κ ` T) � V (Γ, e1, (∃κ) (λα.X)) ∧ V (Γ⊕ α:κ⊕ x:X, e2, A)

V (Γ, e asB,A) = (B
.
= A) ∧ V (Γ, e, B)

Figure 2. Type inference for new target language constructs

The algorithm is specified as a reduction relation P 7→7→ P ′ that
reduces a unification problem to a simpler one; the algorithm pro-
ceeds by repeatedly applying the reduction rules below until no
rules are applicable. Reed [11] proved that this algorithm is cor-
rect and terminating. It is correct in the sense that every transition
preserves the set of solutions to the unification problem and termi-
nating in that every chain of reductions will eventually reach a state
where no rule applies. This final state will either be a solution, or
⊥, or a stuck state that represents an answer of “maybe”.

We present only the rules critical to our present discussion, leav-
ing out rules for the occurs check, for handling constraints of the
form X

.
= X[ξ], and for pruning the contexts of metavariables to

eliminate underscores from substitutions. Full details are available
in Reed [11].

1. Decomposition.

(λα.A
.
= λα.A′) ∧ P 7→7→ (A

.
= A′) ∧ P

(H A1 · · ·An
.
= H A′1 · · ·A′n) ∧ P 7→7→

(A1
.
= A′1) ∧ · · · ∧ (An

.
= A′n) ∧ P

(H A1 · · ·An
.
= H ′A′1 · · ·A′n) ∧ P 7→7→ ⊥

(if H 6= H ′)

2. Inversion.

(X[ξ]
.
= R) ∧ P 7→7→ (X

.
= [ξ−1]R) ∧ P

3. Instantiation.

(X
.
= R)∧P 7→7→ (X ← R)∧ [R/X]P (if X /∈ FV (R))

3.3 Expression Language
The expression syntax of our language is mostly standard. We write
Ψ for term contexts and reserve Γ for a pair ∆; Ψ of a type and
term context. We use a pattern matching let as our elimination
form for products, as it permits a more elegant definition of closure
conversion.

Expressions e ::= x | λx:A. e | e e′ |
| Λα:κ.e | e [A]κ
| 〈e1, . . . en〉
| let 〈x1, . . . xn〉 = e in e′

Constants c ::= (→) | (×n) | (∀κ) | · · ·
Term Contexts Ψ ::= · | Ψ, x:A

Contexts Γ ::= ∆; Ψ

We could give a standard set of typing rules for our term lan-
guage. We elide those and instead present type inference rules
for the language as Figure 1. Following Pfenning [10], we define
type inference as a function V (Γ, e, A) = P over contexts, terms,
and expected types that generates a higher-order unification prob-
lem. Because type inference relies on renamings, we implicitly eta-

Forgetful Type-Directed Compilation 5 2021/11/3

contract types down to variables when constructing substitutions if
appropriate.

In the definitions of type inference, we adopt the notational con-
vention that the modal contexts that are output implicitly percolate
upwards. That is, ∃Ξ � (∃Ξ1 � P1) ∧ (∃Ξ2 � P2) is synony-
mous with ∃Ξ,Ξ1,Ξ2 � P1 ∧ P2.

Most of the rules are quite straightforward. A common pat-
tern is that introduction forms create new variables for their sub-
components and unify a type constructed from them with the ex-
pected type. Elimination forms construct the type being eliminated
and use it as the expected type for the expression being operated on.
The trickiest is for a type application e [B]κ; a new type variable
F is created under an extended context, and e is checked against
(∀κ)(λα.F) – that is, against ∀α.F . The result type, then, is B
substituted for α in F , so we unify A with F [id∆, (B/α)].

In order to omit a type annotation, metavariables are used. For
example, in order to write a lambda without annotating its domain,
we would write λx:X. e for a fresh metavariable X1. Somewhat
unusually, we permit partial type annotations: metavariables may
occur inside of a type annotation, not just at the top level. This is
to allow translation phases freedom to include enough of the an-
notation to preserve reconstructability without including the entire
type. In particular, this is quite important for closure conversion.

4. Translation
4.1 Definition of Closure Conversion
The target language for the translation is the source language ex-
tended as follows:

Expressions e ::= · · ·
| letx = e1 in e2

| λ̂x:A. e
| packκ[B, e] asC
| unpackκ(e1, α.x.e2)
| e asA

Constants c ::= · · · | (∃κ)

where pack and unpack are the introduction and elimination forms
for existential types, λ̂ defines a closed function, and e asA is
a type annotation that we will need for technical reasons. Type
inference rules for these constructs are shown in Figure 2.

Since many of the type annotations may have been removed
prior to closure conversion, the closure conversion translation can-
not rely on having full typing information. Thus we define it as a
syntax-directed 2 translation. Figure 3 defines closure conversion
as three syntax-directed functions A, σ, and e. (We will also write
Γ and P for the lifting of type conversion over contexts and unifi-
cation problems.)

Unsurprisingly, most cases are trivial compatibility cases. The
action happens in the type translation case for arrows and in the
term translation case for application and lambda. Type translation
for arrows works by rewriting (→)A1 A2 into the existential pack-
age

(∃T)(λαe.((A1 × αe)→ A2)× αe).
Translation of application translates the subparts, binds them to
variables, then unpacks the closure and applies the function to the
argument and the environment. A type annotation is placed on the
variable env: this is necessary to preserve type reconstructability.

1 It is important that an implementation be able to elide the substitutions on
metavariables in most cases, or else we will eliminate type annotations only
to be swamped by substitution annotations.
2 Technically the translation also depends on the kind environment, though
representation choices in the implementation eliminate this dependency

The translation of lambdas is a little trickier and involves gener-
ating variables to fill in annotations. The three variables generated
are Z, which is the type of environment of the function, Y , the
codomain of the function, and I , the domain of the function. The
pack is given an annotation detailed enough to make it clear that
the result is a translated function, including whatever annotations
on the domain already existed in the source program.

4.2 Correctness of Closure Conversion
The main interesting property that we require of our closure con-
version translation (other than correctness) is preservation of type
reconstructability: if the input program can be reconstructed by our
algorithm, then it can be reconstructed after closure conversion as
well. We prove the following theorem:
Preservation of reconstructability: If V (Γ, e, A) 7→7→∗ S, where
S is a solved form, then V (Γ, e, A) 7→7→∗ S. 3

We prove this in two steps: one pertaining to types and one to
terms. First we show that solvability of unification problems is pre-
served under type translation. Second we show that the inference
constraints of a translated term reduce to the translation of the in-
ference constraints of the original term.

Preservation of solvability: If P 7→7→∗ S, where S is a solved
form, then P 7→7→∗ S.
Proof. By induction over the length of the reduction derivation,
case analyzing on the rule used to derive the first step.

For Decomposition of lambdas, we observe that by induction,
(A

.
= A′) ∧ P 7→7→∗ S. Then, by reapplying Decomposition

we find (λα.A
.
= λα.A′) ∧ P 7→7→∗ S which is equivalent to

(λα.A
.
= λα.A′) ∧ P 7→7→∗ S.

The case for Decomposition of applications where the head is
something other than (→) is similar.

For Decomposition of applications where the head is an arrow,
we need to show that ((→)A1 A2)

.
= ((→)B1 B2) ∧ P 7→7→∗ S.

Expanding the equation we are looking at gives us

(∃κ)(λα.((A1×α)→ A2)×α)
.
= (∃κ)(λα.((B1×α)→ B2)×α)

Applying Decomposition seven times tells us that

P ∧ ((→)A1 A2)
.
= ((→)B1 B2) 7→7→∗ P ∧A1

.
= B1∧A2

.
= B2

Then we apply induction to finish up this case.
For Invert, we first note that since translation is the identity

on variables a translated pattern substitution is still a pattern sub-
stitution. Furthermore, hereditary substitution commutes with type
translation (the induction metric for this proof, like all proofs about
hereditary substitution, is complicated—but the proof cases them-
selves are very simple).

For Instantiate, we have that P ∧X .
= A 7→7→ [A/X]P ∧X ←

A and [A/X]P ∧ X ← A 7→7→∗ S. We note that modal substitu-
tion commutes with type translation (this is easily established by
induction), and so [A/X]P = [A/X]P . Then we can reapply In-
stantiate and appeal to induction to show that P ∧X .

= A 7→7→∗ S.
For this case we have that P ∧X[ξ]

.
= B 7→7→ P ∧X .

= [ξ−1]B
and P ∧X .

= [ξ−1]B 7→7→∗ S. By induction we have that P ∧X .
=

[ξ−1]B 7→7→∗ S. From the two observations above, we have that
[ξ−1]B = [ξ

−1
]B.

Now we can apply Invert, yielding P ∧X[ξ]
.
= B 7→7→ P ∧

X
.
= [ξ−1]B and thus P ∧X[ξ]

.
= B 7→7→∗ S.

The cases for the rules we elided are straightforward. �

3 Technically, V (Γ, e, A) can step to some extension of S. We sweep this
under the rug and identify equations up to ignoring solved metavariables
that were introduced during translation.

Forgetful Type-Directed Compilation 6 2021/11/3

λα.A = λα.A

(→)A1 A2 = (∃T)(λαenv.((A1 × αenv)→ A2)× αenv)

H A1 · · ·An = H A1 · · ·An where H 6= (→)

X[σ] = X[σ]

() = ()

· = ·
σ, (α/β) = σ, (α/β)

σ, (M/α) = σ, (M/β)

x = x

e1 e2 = letx = e1 in
let y = e2 in
unpackT [αenv, clos] = x in
let 〈f, env〉 = clos in
f 〈y, env asαenv〉

λx:B. e = packT[Z,

〈(λ̂i:I. let 〈x, env〉 = i in
let 〈x1, . . . xn〉 = env in
e),

〈x1, . . . xn〉〉]
as (∃T)(λαenv.((B × αenv)→ Y [idα])× αenv)
(where FV (e) \ {x} = {x1, . . . , xn},
and α are the type variables in scope
and I, Y, Z are fresh)

〈e1, . . . en〉 = 〈e1, . . . en〉
let 〈x1, . . . xn〉 = e1 in e2 = let 〈x1, . . . xn〉 = e1 in e2

Λα:κ.e = Λα:κ.e

e [B]κ = e [B]κ

Figure 3. Closure conversion

Equivalence of inferred constraints under term translation:
For all expressions e, V (Γ, e, A) 7→7→∗ V (Γ, e, A). This theorem es-
sentially states that translation and constraint generation commute
modulo reduction of the unification problem. (It is somewhat sur-
prising that the left hand side can reduce directly to the right hand
side, instead of just being able to reduce to a common reduct!)
Proof. By induction over the structure of the term e. The proof
cases are all fairly straightforward, but the cases for lambda and
application are unsurprisingly quite involved. Since the translation
of lambda and application are fairly large, the unification problems
generated by their translations introduce a number of new con-
straints that need to be unrolled. Once the constraints are collected,
it is a fairly straightforward procedure to decompose constraints
and instantiate variables to arrive at something we can apply the
inductive hypothesis to.
Application First, we consider the case where e = e1 e2. We
assume that Γ = ∆; · · · and we let ∆′ = ∆, αe:T. The first step is
to unroll the definition of e1 e2 in order to compute the constraints
generated by V (Γ, e1 e2, A):

letx = e1 in
let y = e2 in
unpackT [αe, clos] = x in
let 〈f, env〉 = clos in
f 〈y, env asαe〉

Some tedious but straightforward computation tells us that

V (Γ, e1 e2, A) = ∃X,Y :: (∆ ` T),

C, F,E,D, Y ′, E′ :: (∆, αe:T ` T) �

V (Γ, e1, X) ∧
V (Γ⊕ x:X, e2, Y) ∧

(1) X
.
= (∃T) (λαe.C) ∧

(2) C
.
= F × E ∧

(3) F
.
= D → A ∧

(4) D
.
= Y ′ × E′ ∧

(5) Y ′[id∆′]
.
= Y [id∆] ∧

(6) E
.
= αe ∧

(7) E′
.
= αe

The unification variables X , Y , C, F , and E correspond to the
types of the term variables x, y, clos, f , and env. Constraint
(1) comes from unpacking x, (2) comes from destructuring the
variable clos bound by the unpack, (3) comes from applying f ,
(4) comes the argument to f being a pair, (5) comes from the first
pair element being y, and (6) and (7) come from the second pair
element being env asαe.

Forgetful Type-Directed Compilation 7 2021/11/3

Inverting (5) gives us Y ′ .= Y [id∆]. We then instantiate D, Y ′,
E, and E′ (constraints (4) through (7)) and substitute into (2) and
(3), giving us F .

= (Y [id∆] × αe) → A and C .
= F × αe.

Then instantiating F and C and substituting into (1) gives us
that X .

= (∃T)(λαe.((Y [id∆] × αe) → A) × αe). Finally we
instantiate X .

Putting all of these reductions together, eliminating the tempo-
rary bindings, and taking advantage of x not appearing free in e2

gives us

V (Γ, e1 e2, A)

7→7→∗ ∃Y :: (∆ ` T) �

V (Γ, e1,

(∃T)(λαe.((Y [id∆]× αe)→ A)× αe)) ∧
V (Γ, e2, Y)

= ∃Y :: (∆ ` T) �

V (Γ, e1, Y → A) ∧
V (Γ, e2, Y)

By induction we have that V (Γ, e1, Y → A) 7→7→∗ V (Γ, e1, Y → A)

and V (Γ, e2, Y) 7→7→∗ V (Γ, e2, Y). Then we have

V (Γ, e1 e2, A) 7→7→∗ ∃Y :: (∆ ` T) �

V (Γ, e1, Y → A) ∧
V (Γ, e2, Y)

= V (Γ, e1 e2, A)

As an aside, to see why the annotation on the use of the variable
env was necessary, note that if we did not have that annotation, in-
stead of constraints (6) and (7) we would have the single constraint
E

.
= E′. We then would have no way to determine that E .

= αe,
and would only be able to get X .

= (∃T)(λαe.((Y [id∆] × E) →
A) × E), which is not what we need to match our inductive hy-
pothesis for e1.
Lambda Now we consider the case for e = λx:B. e. Suppose
that the free variables of e are {x1, . . . , xn}. Then we will have
Γ = ∆;x1:A1; . . . xn:An; y1:B1; . . . ym:Bm (where y1, . . . , ym
are in the context but not used in e). Because only the free variables
are used, we have
V (Γ, λx:B. e,A) = V (Γ′, λx:B. e,A) where
Γ′ = ∆;x1:A1; . . . xn:An. The translation of the expression is

packT[Z,

〈(λ̂i:I. let 〈x, env〉 = i in
let 〈x1, . . . xn〉 = env in
e),

〈x1, . . . xn〉〉]
as (∃T)(λαe.((B × αe)→ Y [idα])× αe)
(for fresh I, Y, Z)

After more tedious but uncomplicated computation, we get:

V (Γ, λx:B. e,A) =

∃F :: (∆, αe:T ` T),

B1, B2, V1, . . . , Vn, Y
′,

X,E,X1, . . . , Xn :: (∆ ` T) �

(1) A
.
= (∃T)(λαe.((B × αe)→ Y [id∆])× αe) ∧

(2) (∃T)(λαe.((B × αe)→ Y [id∆])× αe)
.
=

(∃T) (λαe.F) ∧
(3) F [id∆, (Z/αe)]

.
= B1 ×B2 ∧

(4) B2
.
= (×n)V1 . . . Vn ∧

(5) V1
.
= A1 ∧ · · · ∧ Vn

.
= An ∧

(6) B1
.
= I → Y ′ ∧

(7) I
.
= X × E ∧

(8) E
.
= (×n)X1 . . . Xn ∧

V (∆;x:X;x1:X1; · · ·xn:Xn, e, Y
′)

With the exception of F , all modal variables that appear
in this case are under the context ∆. The unification variables
X,E,X1, . . . , Xn correspond to the term variables x, env, x1, . . . , xn.
Constraints (1) and (2) come directly from the outer pack; (3)
comes from the term inside of the pack being a pair; (4) comes
from the second pair element being an n-tuple, (5) comes from
each element of the environment n-tuple being a variable xi that
has type Ai; (6) comes from the first element of the pair being a
lambda with annotation I; (7) and (8) come from deconstructing
the argument p. In the recursive invocation of V we elide i and env
because they do not occur free in e.

Performing all of the immediately available instantiations (con-
straints (4) through (8)) gives us

V (Γ, λx:B. e,A) 7→7→∗

∃F :: (∆, αe:T ` T),

Y ′, X,E,X1, . . . , Xn :: (∆ ` T) �

(1) A
.
= (∃T)(λαe.((B × αe)→ Y [id∆])× αe) ∧

(2) (∃T)(λαe.((B × αe)→ Y [id∆])× αe)
.
=

(∃T) (λαe.F) ∧
(3) F [id∆, (Z/αe)]

.
= ((X × ((×n)X1 . . . Xn))→ Y ′)
×((×n)A1 . . . An)∧

V (∆;x:X;x1:X1; · · ·xn:Xn, e, Y
′)

Using Decomposition on (2) twice gives us

F
.
= ((B × αe)→ Y [id∆])× αe,

which we instantiate. The right hand side of this equation contains
a free αe, which will be replaced by Z when F is substituted into
constraint (3), yielding the constraint

((X × ((×n)X1 . . . Xn))→ Y ′)× ((×n)A1 . . . An)
.
= ((B × Z)→ Y)× Z

Decomposing this repeatedly gives us thatB .
= X ,Z .

= (×n)X1 . . . Xn,
Y

.
= Y ′ and Z .

= (×n)A1 . . . An. We can then instantiate X and
Y ′; instantiating Z and decomposing then gives us Xi

.
= Ai.

Forgetful Type-Directed Compilation 8 2021/11/3

Putting all of these reductions together and eliminating the
temporary bindings gives us

V (Γ, λx:B. e,A) 7→7→∗

A
.
= (∃T)(λαe.((B × αe)→ Y [id∆])× αe) ∧

V (∆;x:B;x1:A1; · · · ;xn:An, e, Y)

= A
.
= (∃T)(λαe.((B × αe)→ Y [id∆])× αe) ∧

V (Γ′ ⊕ x:B, e, Y)

By induction we have that V (Γ′ ⊕ x:X, e, Y) 7→7→∗
V (Γ′ ⊕ x:X, e, Y). Thus

V (Γ, λx:B. e,A) 7→7→∗

A
.
= (∃T)(λαe.((B × αe)→ Y [id∆])× αe) ∧

V (Γ′ ⊕ x:X, e, Y)

= A
.
= B → Y [id∆] ∧ V (Γ′ ⊕ x:X, e, Y)

= V (Γ′, λx:B. e,A)

= V (Γ, λx:B. e,A)

The other cases in the proof are straightforward applications of
induction. �

Unfortunately, the theorem we proved is only almost the theo-
rem we want. In particular, the theorem states that there exists an
evaluation trace of the algorithm that yields the solution. However,
the algorithm is non-deterministic: there are a number of rules that
can be applied at every step. It is conceivably possible that even
if there existed one execution path that produced a solution, an-
other one might get stuck. We believe that this cannot occur and
express this with the following “restricted confluence” conjecture:
If P 7→7→∗ P1, P 7→7→∗ P2, and P1 7→7→∗ S, where S is a solved form,
then P2 7→7→∗ S′, where S′ is a solved form.

Although our testing and this algorithm’s long-time use in Twelf
leaves us reasonably confident of this conjecture’s validity, a proof
has stubbornly evaded our attempts so far.

However, since some path is guaranteed to exist, even if this
conjecture is false, we could still produce a working algorithm by
backtracking when a stuck state is reached.

5. Type Forgetting
5.1 Algorithm
As discussed earlier, in order to remove annotations from an early
stage intermediate language, we employ a “type forgetting” algo-
rithm. The key idea of the type forgetting algorithm is that in order
to determine what annotations we need, we simply run the type
reconstruction algorithm and see where it gets stuck. We then iter-
atively add back in type information until we can solve all of the
constraints.

Given some program e, such that · ` e : A, we construct a
detyped expression edetyped as follows

1. Fix some ordering on the type annotations so each annotation
has some unique identifier i, 1 ≤ i ≤ n, where n is the number
of type annotations.

2. Construct eunannotated by replacing each type annotation Ai
in e with a fresh modal variable Xi.

3. Compute P = V (·, eunannotated, A) and find irreducible P0

such that P 7→7→∗ P0.

4. For each annotation location i we construct a new unification
state Pi and a type annotation Ci to use in edetyped:

(a) Find a constraint of the form Xi ← Bi in Pi−1. If no such
constraint exists, let Bi be Xi.

(b) If Bi contains no modal variables, the annotation is recon-
structable and so we do not need to include it. Let Ci = Xi
(that is, omit the annotation) and Pi = Pi−1.

(c) If it does contain modal variables, we can not fully recon-
struct the annotation, so we restore it by letting Ci = Ai.
Then find irreducible Pi such that Pi−1∧Ai

.
= Bi 7→7→∗ Pi.

5.2 Example
To illustrate the workings of the algorithm, consider the example
term

let id = Λα:T.λx:α. x in id [int]T 5

To detype this, we first construct eunannotated

let id = Λα:T.λx:X1. x in id [X2]T 5

We then compute the inference constraints for this term and reduce
them until we reach the irreducible equation P0

X1[X2/α]
.
= int

We now process the first type annotation. There are no constraints
of the form Xi ← Bi, so we output α as the annotation to use in
place of Xi and find irreducible P1 such that

X1[X2/α]
.
= int ∧ α .

= X1 7→7→∗ P1

We find P1 as
X1 ← α ∧X2 ← int

When we go to process the second annotation, we see that the
unification state contains X2 ← int; since X2 is fully solved (is
instantiated with a type that contains no modal variables), we know
we don’t need to annotate it, and emitX2 as the annotation, leaving
us with the detyped term edetyped

let id = Λα:T.λx:α. x in id [X2]T 5

While the correctness of the algorithm does not depend on the
order in which annotations are processed, the number of annota-
tions removed is sensitive to the order. In the above example, if we
process the int annotation first, we would add back in that anno-
tation but be left with the irreducible constraint X1[int/α]

.
= int

and would need to add back the α annotation as well. In our imple-
mentation, the syntax tree is traversed in an order that was found
to work well, but nothing particularly clever is done. Investigating
heuristics for what order to process annotations is a potential area
for future work.

5.3 Correctness
The important correctness property of type forgetting is that the
term produced by the algorithm can actually be reconstructed.

Correctness of type forgetting: Given a term edetyped pro-
duced by running type forgetting on · ` e : A, then V (·, edetyped, A)
7→7→∗ S, for some solution S.
Proof. There are two snags that make correctness non-obvious.
First, type forgetting adds constraints in piecemeal as it progresses
while reconstruction of detyped term adds all of the constraints at
the beginning. Second, the constraints added during forgetting do
not exactly match how annotations appear during type reconstruc-
tion: forgetting adds constraints (Ai

.
= Bi) while reconstruction of

the detyped term directly replaces Xi with Ai.
The proof, then, procedes in two stages. First, we show that the

problem generated by adding to P a constraint (Xi
.
= Bi) for each

annotation we added back can be solved. Second, we show that this
implies that V (·, edetyped, A) be solved.

First, in order to talk about the annotations added by the algo-
rithm, we let Qi = (Ai

.
= Bi), Q′i = (Xi

.
= Bi) if we added an

Forgetful Type-Directed Compilation 9 2021/11/3

annotation for i, and otherwise let Qi = >, Q′i = >. Thus, Qi is
the constraint that was added during forgetting and Q′i represents
the type annotation that was added. Let R = Q′1 ∧ · · · ∧Q′n. That
is, R represents all of the annotations added to construct edetyped.

Recall that the first stage of this proof consists of showing that
adding the constraints Q′i at the beginning of unification is equiv-
alent to adding in the constraints Qi piecemeal as type forgetting
proceeds. Recall that P = V (·, eunannotated, A). We show that
P ∧ R 7→7→∗ Pn. We construct a trace of this that follows the trace
from the forgetting process.

First, since P 7→7→∗ P0, we have P ∧R 7→7→∗ P0 ∧R0, where R0

is R with the substitutions induced by P0 applied. Then, for each
i (looking only at the case where we have to add an annotation):
We have Pi ∧Ri−1, where Pi contains Xi ← Bi. This means that
Ri−1 contains Ai

.
= Bi. We know that Pi−1 ∧ Ai

.
= Bi 7→7→∗ Pi,

so then Pi−1 ∧ Ri−1 7→7→∗ Pi ∧ Ri. Note that for every i, Ri =
Qi+1 ∧ · · · ∧Qn with the substitutions induced by Pi applied.

Now it remains to be shown that this implies that V (·, edetyped, A)
7→7→∗ S. The term edetyped is simply eunannotated with cer-
tain modal variables Xi replaced with annotations Bi; thus,
V (·, edetyped, A) is likewise simply V (·, eunannotated, A) (that
is, P) with certain modal variables substituted for. This substi-
tution can be simulated by adding constraints representing the
substitutions (that is, R) to P and evaluating. Thus, we have
that P ∧ R 7→7→∗ V (·, edetyped, A). Since we also have that
P ∧R 7→7→∗ Pn, if Pn is a solved form, by restricted confluence we
have that V (·, edetyped, A) 7→7→∗ S, for some S.

It remains to show, then, that Pn is a solved form. We show this
by observing that if we add in all of the annotations (Xi

.
= Bi for

each i) to P , this can still reduce to Pn and also (since it is fully
annotated) to a solution. Then, by restricted confluence, we know
than Pn can reduce to a solution, and because it is irreducible, must
be one. �

6. Prototype Implementation
6.1 Implementation
We have tested our technique in a prototype compiler for ML that
we are building. In our testbed, we use an ML frontend that elabo-
rates ML to a module calculus based on singleton kinds, and then,
through phase splitting [5] and singleton elimination [3], compiles
to a fairly conventional intermediate language that we call “IL-
Core”. IL-Core is a System Fω variant with all the features needed
to compile ML reasonably: existential types, products, sums, re-
cursive types, references, mutually recursive function definitions,
exceptions (and the accompanying extensible type they carry), and
a collection of base types. To allow more efficient closure con-
version and to permit detupling/decurrying optimizations, IL-Core
functions are n-ary.

It is at IL-Core that we begin applying the forgetful type-
directed methodology. Through the method described in Section
5, we remove much of the type information prior to doing any fur-
ther translations. The primary compilation stages implemented by
the compiler are conversion to A-normal form, closure conversion,
and hoisting of closure converted functions. These are all syntax-
directed and believed or proved to preserve type reconstructabil-
ity. We also have some fairly straightforward optimizations: de-
tupling/decurrying of function arguments and a fairly simple op-
timization pass that eliminates reducible expressions, propagates
constants and copies, and eliminates dead code. This optimization
pass is run after each of the other passes to clean up after them as
well as before type forgetting.

In practice, the performance of the type forgetting algorithm
seems quite sensitive to when in the compilation pipeline it is

run. Type forgetting is able to remove many more types if our
simple optimization pass is run first. One reason for this is that
the phase splitting approach to compiling away the ML module
system introduces many packs and unpacks of existential types,
which inhibit inference; the vast majority of these can be eliminated
with simple optimizations. While converting to A-normal form
early would enable more optimization opportunities, converting
to A-normal form before forgetting yields a large performance
penalty: by introducing let bindings for all intermediate values, type
inferring code in A-normal form generates many more unification
variables and constraints.

While the theory presented above keeps type constructors in
canonical form and allows substitutions to appear only on modal
variables, the implementation represents types in a calculus of
explicit substitutions in which explicit substitutions can be applied
to any type constructor [1]. During unification, types are weak head
normalized as needed to determine what rules can fire. Variables
are represented as De Bruijn indexes, which allows a very compact
representation of most substitutions that come up in practice. While
notionally we have a number of different intermediate languages, in
the implementation, all of the stages we have described following
conversion to IL-Core use the same internal representation in order
to facilitate reuse of type checking/reconstruction and optimization
passes. The type checker/reconstructor, then, is parametric over a
set of restrictions on the language.

6.2 Evaluation
To evaluate the effectiveness of this technique in reducing the size
of type annotations we measured the size (as measured by the
number of kind and type nodes inside of type annotations). We do
not present time measurements because we don’t have a way to do
an apples-to-apples comparison against a similar compiler differing
only in how the cost of type information is handled.

We measured the type size of the initial IL-Core program, after
running the type forgetting algorithm, after performing all of our
compilation stages, and after reconstructing the annotations for the
last stage. As tests we used an implementation of infinite dimen-
sional vectors, mutable doubly-linked lists, a collection of monads
and assorted utilities, and a miniature version of the ML basis li-
brary. The type sizes are presented in Figure 4.

Forgetful type-directed compilation dramatically reduces the
size of the types. With all annotations in place, our compilation
process increases the amount of type information by nearly a factor
of ten. With forgetful type-directed compilation, the sizes of the
output types are reduced by over 85%. In fact, they are actually
smaller in the translated code than in the original annotated input!

In Figure 5, we show the actual size of the types in memory.
Here, we also show the size of the final stage if the type-forgetting
algorithm was not used (but forgetful translations were) and of the
final stage reconstructed types if all identical types are structurally
shared (using a feature of the MLton ML compiler to enforce
sharing). While sharing substantially reduces the memory usage of
types compared to the fully reconstructed unshared version, it still
uses several times more memory than our type-forgotten version.

7. Related Work
A number of techniques have been used to manage type informa-
tion in typed intermediate languages. Shao et al. “combine hash-
consing, memoization, and advanced lambda encoding” in order to
preserve physical sharing of type representations in SML/NJ [12].
Their techniques are effective for their uses but require passes to be
carefully constructed to take advantage of it. Furthermore, SML/NJ
throws away types prior to CPS and closure conversion and so it
is unclear whether this technique is sufficient for well performing
typed CPS and closure conversion.

Forgetful Type-Directed Compilation 10 2021/11/3

 0

 50000

 100000

 150000

 200000

infvec variable-queue monad minibasis

pre detyping
post detyping

final
final reconstructed

Figure 4. Size of type information in various stages (node counts)

 0

 0.5

 1

 1.5

 2

 2.5

infvec variable-queue monad minibasis

final
final no detyping

final reconstructed
max sharing

Figure 5. Size of type information in various stages (in megabytes)

Forgetful Type-Directed Compilation 11 2021/11/3

The TILT compiler uses sophisticated type theory (such as un-
labeled singleton kinds) and a lettype construct to manage its type
information [9]. Chlipala et al. proposed Strict Bidirectional Type
Checking, which uses strict logic in order to preserve the benefits of
bidirectional type checking across sequentialization into A-normal
form [2].

Tate et. al present iTalX [13], a system for certifying compila-
tion of object-oriented languages with a similar approach to ours:
the target is an inferable typed assembly language, and inference
is done after all the compilation stages. Unlike our system, iTalX
restricts quantification in order to guarantee that inference is de-
cidable. iTalX avoids type annotations on instructions but needs to
annotate function signatures and object layouts; this works well for
object oriented imperative languages but is unlikely to scale well to
representing functional languages after closure conversion, since
all closures would need to be fully annotated.

Our technique, in contrast to all of the above, uses intermediate
languages that are fairly standard and unsurprising typed lambda
calculi.

While higher-order unification is undecidable, in our setting we
are inferring the types in compiler intermediate languages, which
should always be well typed. This suggests we could in principle
use a semi-decision procedure such as Huet’s algorithm [4]; we
have not pursued this because we felt that a backtracking algorithm
is likely to be too expensive and because it would make catching
compiler bugs much more difficult.

References
[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Levy. Explicit substitu-

tions. In 17th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, San Francisco, California, USA, 1990.

[2] A. Chlipala, L. Petersen, and R. Harper. Strict bidirectional type
checking. In 2005 ACM SIGPLAN International Workshop on Types
in Languages Design and Implementation, Long Beach, California,
USA, 2005.

[3] K. Crary. Sound and complete elimination of singleton kinds. In Third
Workshop on Types in Compilation, volume 2071 of Lecture Notes
in Computer Science, pages 1–25. Springer, Sept. 2000. Extended
version published as CMU technical report CMU-CS-00-104.

[4] G. Dowek, T. Hardin, and C. Kirchner. Higher Order Unification via
Explicit Substitutions. Rapport de recherche RR-2709, INRIA, 1995.

[5] R. Harper, J. C. Mitchell, and E. Moggi. Higher-order modules and the
phase distinction. In Seventeenth ACM Symposium on Principles of
Programming Languages, pages 341–354, San Francisco, Jan. 1990.

[6] Y. Minamide, G. Morrisett, and R. Harper. Typed closure conversion.
In Twenty-Third ACM Symposium on Principles of Programming Lan-
guages, 1996.

[7] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to
typed assembly language. ACM Transactions on Programming Lan-
guages and Systems, 21(3):527–568, May 1999. An earlier version
appeared in the 1998 Symposium on Principles of Programming Lan-
guages.

[8] A. Nanevski, F. Pfenning, and B. Pientka. A contextual modal type
theory. ACM Transactions on Computational Logic, 9(3), 2008.

[9] L. Petersen, P. Cheng, R. Harper, and C. Stone. Implementing the
TILT internal language. Technical Report CMU-CS-00-180, Carnegie
Mellon University, School of Computer Science, 2000.

[10] F. Pfenning. Partial polymorphic type inference and higher-order uni-
fication. In 1998 ACM Conference on Lisp and Functional Program-
ming, pages 153–163, Snowbird, Utah, July 1988.

[11] J. Reed. Higher-order constraint simplification in dependent type
theory. In Fourth Workshop on Logical Frameworks and Meta-
Languages: Theory and Practice, Montreal, Quebec, Canada, 2009.

[12] Z. Shao, C. League, and S. Monnier. Implementing typed intermediate
languages. In 1998 ACM International Conference on Functional
Programming, pages 313–323, Baltimore, Maryland, Sept. 1998.

[13] R. Tate, J. Chen, and C. Hawblitzel. Inferable object-oriented typed
assembly language. In 2010 SIGPLAN Conference on Programming
Language Design and Implementation, Toronto, Ontario, Canada,
2010.

[14] K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A concurrent
logical framework I: Judgments and properties. Technical Report
CMU-CS-02-101, Carnegie Mellon University, School of Computer
Science, 2002. Revised May 2003.

Forgetful Type-Directed Compilation 12 2021/11/3

