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Introduction
JavaScript

e Developed at Netscape in the mid-90s

¢ Originally intended for dynamic web content
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Introduction
JavaScript

C-like syntax (curly braces)
Object-Oriented (prototype-based)
First-class functions

Dynamically typed
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Introduction
JavaScript

¢ Douglas Crockford calls it the “World's Most Popular
Programming Language.”

e “Web 2.0” and AJAX rely on JavaScript

e A lot of the browser is written in JavaScript

CONCLUSION
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The Need for Speed
Making JavaScript faster...

e Makes the browser faster
e Makes running tests faster
e Makes the web faster

CONCLUSION
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The Need for Speed
New kinds of webapps

¢ Facial recognition
e Video manipulation

e Chrome demos
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The Need for Speed
Other browsers competing on JS speed

e Apple's SquirrelFish Extreme (er... "Nitro")
e Google's V8
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Overview

e Mozilla's recent JS engine upgrade

o Trace-based Just-in-Time Type Specialization
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Details

Why making JS fast is hard

e The biggest impediment to JS speed is dynamic typing
e The type of something isn't known for sure until runtime
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Details

Figuring out the types

e If you can't figure out the types until runtime...
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Details

Figuring out the types

e If you can't figure out the types until runtime...

e Then observe them at runtime
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Details
How it works

e Each time through a loop, the code takes one path

o TraceMonkey monitors the types of variables through one
path and generates native code for it

e Only worth doing for “hot” loops
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Details
Some perf numbers

Assorted benchmarks

Ry
4 Bow fester M Tracemankey
4,762ms
S —
185ms
27 5x faster
Fm
image
e

oA0

— T48ams
e ‘J|95r'|=
5.26x faster

Oms 2,000ms 4,000ms 6,000ms 8,000ms

CONCLUSION



INTRODUCTION TRACEMONKEY INLINE THREADING CONCLUSION

000 (e} (e}
000 0000 000000
@000 000000
00000
Limitations

Trace recording is expensive

e Recording a trace isn't free

e Recording a trace takes about 400x as long as it would to
Interpret It

o A loop needs to be executed a lot to take advantage of it
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Limitations

Not everything s traced

e The tracer still doesn't support some constructs

e Generators
e Recursion

CONCLUSION



INTRODUCTION TRACEMONKEY INLINE THREADING CONCLUSION

000 (e} (e}
000 0000 000000
[e]e] Jo} 000000
00000
Limitations

Bad trace performance
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Limitations

Ezxponential trace explosion

¢ n independent, frequently taken branches means 2" traces
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Limitations

Ezxponential trace explosion

¢ n independent, frequently taken branches means 2" traces
e This runs twice as slowly with tracing on:

var vl, v2,
1 =v2-=
for (var i

v3, v4, v5, v6, v7, v8, v9, v10;

v3 = v4 =
0; 1 < 1<<22; i++) {

v = v6 = v7 =v8 = Vv9 = v10 = 0;

if ((1 & (1 << 1)) !'=0)
v1++;

if ((1 & (1 << 2)) !'=0)
V2++;

if ((1 & (1 << 3)) '=0)
V3++;

/* ... */
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Inline threading
What to do

e Tracing is great, but but we'd like to be fast even when it
doesn't work

e So we need to speed up what we are doing when we
aren’t tracing: the interpreter
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Interpreter overview
The structure of the interpreter

e The bytecode compiler takes JavaScript source and
generates bytecode (a sort of high level assembly)

e The interpreter (or virtual machine) then executes the
bytecodes

e This should sound familiar: it is made explicit in Java
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Interpreter overview
Stack based VM

e The SpiderMonkey VM is stack-based

e Most operations operate on the top elements of a stack
of values

e Similar to a reverse polish notation calculator
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Interpreter overview
Buytecodes

e Opcodes exist to do all of the little tasks required to
execute JavaScript, like
e Add the top two numbers on the stack
e Push the contents of a local variable onto the stack
e Push the contents of an object property onto the stack
e Call another function
e Jump to another code address
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Interpreter overview
Not all bytecodes are created equal

e Some bytecodes are small and simple (pushing a local
variable to the stack)

e Some are big and complicated (pushing a property on the
stack, calling a function)
e And some fall in the middle (adding two numbers)

e |t's easy if they are both integers, but they could also be
doubles, strings, chunks of XML...
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Interpreter overview
The interpreter loop

for(;;) {
JSO0p opcode = code[pc];
switch (opcode) {

case ADD:
/* Add... */
pc += ADD LENGTH;
break;

case EQ:

/* Compare things for equality... */
pc += EQ_LENGTH;

break;

case GOTO:
pc = get target(code, pc);
break;

/* .0 X%/
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Interpreter overview
Interpreter overhead

e There is a lot of fixed overhead

e Looking up next opcode
Bounds check for the switch
Table lookup for the switch
Indirect jump to correct case
Jump back to the top of the loop
e Incrementing program counter

¢ And since the switch does an indirect jump, the processor
has trouble predicting it
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Call threading
An insight

o Most of the overhead comes from figuring out what
opcode to execute next
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Call threading
An insight

o Most of the overhead comes from figuring out what
opcode to execute next

e But with the exception of control flow operations, we
know what opcodes are executed in what order

CONCLUSION
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Call threading
An insight

o Most of the overhead comes from figuring out what
opcode to execute next

e But with the exception of control flow operations, we
know what opcodes are executed in what order

e Is there a way we can express this?
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Call threading
The reveal

o We can generate native code to invoke the operations we
want

e Express the operations as functions instead of cases in a
switch
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Call threading
Opcode functions

void ADD func(state *st, int argument) {
/* Add... */

void EQ FUNC(state *st, int argument) {
/* Compare things for equality... */
}

28 /37
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Call threading
An example

e So if we have the following code (a = a + b):

e GETLOCAL 0
e GETLOCAL 1
e ADD

e SETLOCAL 0

o \We generate code that does:

e GETLOCAL func(st, 0)
e GETLOCAL func(st, 1)
e ADD func(st, ...)

e SETLOCAL func(st, 0);
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Call threading
Great success?

e So, we have eliminated

Looking up next opcode

Bounds check for the switch
Table lookup for the switch
Indirect jump to correct case
Jump back to the top of the loop
e Incrementing program counter

e And all of the opcode dispatches are direct calls, so the
branch predictor can go to town

e So this should be a major win, right?
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Call threading
The problem

e Not so much. 20% performance loss
e We've introduced a bunch of new overhead as well

e Loading arguments into registers
e Calling the function
e Function prologue

e And worst of all, the C compiler doesn't have as much
room to optimize
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Inline threading
Eliminating the new overhead

e Is there a way to eliminate this overhead?
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Inline threading
Inlining

A lot of opcodes are small and simple

Instead of generating code that calls functions to perform
them...

Just generate code that does them

This eliminates all the overhead
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Inline threading
Inlining

e While “most” opcodes are big, the frequently executed
ones tend to be small

o And small opcodes benefit the most from eliminating
overhead

e 70% of the opcodes executed in SunSpider are easily
inlinable
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Inline threading
An example

e Returning to our previous example:
e GETLOCALDO
e GETLOCAL 1
e ADD
e SETLOCAL O

o \We generate code that does:

e // push local 0 onto the stack
e // push local 1 onto the stack
e ADD func(st, ...)

e // set local 0 to the top stack value
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Inline threading
Perf Numbers

e Now we start to win.

e 6% speedup on SunSpider on OS X, 12% on Windows
e 3x speedup on some microbenchmarks
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Conclusion
e Still not finalized
e Needs to integrate with tracing
e Lacks support for some language constructs (that require
more nanojit features)
e Bug 506182
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