
Introduction TraceMonkey Inline threading Conclusion

Inline-threading for Tracemonkey

Michael Sullivan

August 13, 2009

1 / 37



Introduction TraceMonkey Inline threading Conclusion

Outline

Introduction

TraceMonkey

Inline threading

2 / 37



Introduction TraceMonkey Inline threading Conclusion

Introduction
JavaScript

� Developed at Netscape in the mid-90s

� Originally intended for dynamic web content

3 / 37



Introduction TraceMonkey Inline threading Conclusion

Introduction
JavaScript

� C-like syntax (curly braces)

� Object-Oriented (prototype-based)

� First-class functions

� Dynamically typed

4 / 37



Introduction TraceMonkey Inline threading Conclusion

Introduction
JavaScript

� Douglas Crockford calls it the “World’s Most Popular
Programming Language.”

� “Web 2.0” and AJAX rely on JavaScript

� A lot of the browser is written in JavaScript

5 / 37



Introduction TraceMonkey Inline threading Conclusion

The Need for Speed
Making JavaScript faster...

� Makes the browser faster

� Makes running tests faster

� Makes the web faster

6 / 37



Introduction TraceMonkey Inline threading Conclusion

The Need for Speed
New kinds of webapps

� Facial recognition

� Video manipulation

� Chrome demos

7 / 37



Introduction TraceMonkey Inline threading Conclusion

The Need for Speed
Other browsers competing on JS speed

� Apple’s SquirrelFish Extreme (er... “Nitro”)

� Google’s V8

8 / 37



Introduction TraceMonkey Inline threading Conclusion

TraceMonkey

Overview
Details
Limitations

9 / 37



Introduction TraceMonkey Inline threading Conclusion

Overview

� Mozilla’s recent JS engine upgrade

� Trace-based Just-in-Time Type Specialization

10 / 37



Introduction TraceMonkey Inline threading Conclusion

Details
Why making JS fast is hard

� The biggest impediment to JS speed is dynamic typing
� The type of something isn’t known for sure until runtime

11 / 37



Introduction TraceMonkey Inline threading Conclusion

Details
Figuring out the types

� If you can’t figure out the types until runtime...

� Then observe them at runtime

12 / 37



Introduction TraceMonkey Inline threading Conclusion

Details
Figuring out the types

� If you can’t figure out the types until runtime...

� Then observe them at runtime

12 / 37



Introduction TraceMonkey Inline threading Conclusion

Details
How it works

� Each time through a loop, the code takes one path
� TraceMonkey monitors the types of variables through one

path and generates native code for it
� Only worth doing for “hot” loops

13 / 37



Introduction TraceMonkey Inline threading Conclusion

Details
Some perf numbers

14 / 37



Introduction TraceMonkey Inline threading Conclusion

Limitations
Trace recording is expensive

� Recording a trace isn’t free

� Recording a trace takes about 400x as long as it would to
interpret it

� A loop needs to be executed a lot to take advantage of it

15 / 37



Introduction TraceMonkey Inline threading Conclusion

Limitations
Not everything is traced

� The tracer still doesn’t support some constructs
� Generators
� Recursion

16 / 37



Introduction TraceMonkey Inline threading Conclusion

Limitations
Bad trace performance

3d-cube

string-tagcloud

17 / 37



Introduction TraceMonkey Inline threading Conclusion

Limitations
Exponential trace explosion

� n independent, frequently taken branches means 2n traces

� This runs twice as slowly with tracing on:

var v1, v2, v3, v4, v5, v6, v7, v8, v9, v10;
v1 = v2 = v3 = v4 = v5 = v6 = v7 = v8 = v9 = v10 = 0;
for (var i = 0; i < 1<<22; i++) {

if ((i & (1 << 1)) != 0)
v1++;

if ((i & (1 << 2)) != 0)
v2++;

if ((i & (1 << 3)) != 0)
v3++;

/* ... */
}

18 / 37



Introduction TraceMonkey Inline threading Conclusion

Limitations
Exponential trace explosion

� n independent, frequently taken branches means 2n traces
� This runs twice as slowly with tracing on:

var v1, v2, v3, v4, v5, v6, v7, v8, v9, v10;
v1 = v2 = v3 = v4 = v5 = v6 = v7 = v8 = v9 = v10 = 0;
for (var i = 0; i < 1<<22; i++) {

if ((i & (1 << 1)) != 0)
v1++;

if ((i & (1 << 2)) != 0)
v2++;

if ((i & (1 << 3)) != 0)
v3++;

/* ... */
}

18 / 37



Introduction TraceMonkey Inline threading Conclusion

Inline threading
What to do

� Tracing is great, but but we’d like to be fast even when it
doesn’t work

� So we need to speed up what we are doing when we
aren’t tracing: the interpreter

19 / 37



Introduction TraceMonkey Inline threading Conclusion

Interpreter overview
The structure of the interpreter

� The bytecode compiler takes JavaScript source and
generates bytecode (a sort of high level assembly)

� The interpreter (or virtual machine) then executes the
bytecodes

� This should sound familiar: it is made explicit in Java

20 / 37



Introduction TraceMonkey Inline threading Conclusion

Interpreter overview
Stack based VM

� The SpiderMonkey VM is stack-based

� Most operations operate on the top elements of a stack
of values

� Similar to a reverse polish notation calculator

21 / 37



Introduction TraceMonkey Inline threading Conclusion

Interpreter overview
Bytecodes

� Opcodes exist to do all of the little tasks required to
execute JavaScript, like

� Add the top two numbers on the stack
� Push the contents of a local variable onto the stack
� Push the contents of an object property onto the stack
� Call another function
� Jump to another code address

22 / 37



Introduction TraceMonkey Inline threading Conclusion

Interpreter overview
Not all bytecodes are created equal

� Some bytecodes are small and simple (pushing a local
variable to the stack)

� Some are big and complicated (pushing a property on the
stack, calling a function)

� And some fall in the middle (adding two numbers)
� It’s easy if they are both integers, but they could also be

doubles, strings, chunks of XML...

23 / 37



Introduction TraceMonkey Inline threading Conclusion

Interpreter overview
The interpreter loop

for(;;) {
JSOp opcode = code[pc];
switch (opcode) {
case ADD:

/* Add... */
pc += ADD_LENGTH;
break;

case EQ:
/* Compare things for equality... */
pc += EQ_LENGTH;
break;

case GOTO:
pc = get_target(code, pc);
break;

/* ... */
} 24 / 37



Introduction TraceMonkey Inline threading Conclusion

Interpreter overview
Interpreter overhead

� There is a lot of fixed overhead
� Looking up next opcode
� Bounds check for the switch
� Table lookup for the switch
� Indirect jump to correct case
� Jump back to the top of the loop
� Incrementing program counter

� And since the switch does an indirect jump, the processor
has trouble predicting it

25 / 37



Introduction TraceMonkey Inline threading Conclusion

Call threading
An insight

� Most of the overhead comes from figuring out what
opcode to execute next

� But with the exception of control flow operations, we
know what opcodes are executed in what order

� Is there a way we can express this?

26 / 37



Introduction TraceMonkey Inline threading Conclusion

Call threading
An insight

� Most of the overhead comes from figuring out what
opcode to execute next

� But with the exception of control flow operations, we
know what opcodes are executed in what order

� Is there a way we can express this?

26 / 37



Introduction TraceMonkey Inline threading Conclusion

Call threading
An insight

� Most of the overhead comes from figuring out what
opcode to execute next

� But with the exception of control flow operations, we
know what opcodes are executed in what order

� Is there a way we can express this?

26 / 37



Introduction TraceMonkey Inline threading Conclusion

Call threading
The reveal

� We can generate native code to invoke the operations we
want

� Express the operations as functions instead of cases in a
switch

27 / 37



Introduction TraceMonkey Inline threading Conclusion

Call threading
Opcode functions

void ADD_func(state *st, int argument) {
/* Add... */

}
void EQ_FUNC(state *st, int argument) {

/* Compare things for equality... */
}

28 / 37



Introduction TraceMonkey Inline threading Conclusion

Call threading
An example

� So if we have the following code (a = a + b):
� GETLOCAL 0
� GETLOCAL 1
� ADD
� SETLOCAL 0

� We generate code that does:
� GETLOCAL func(st, 0)
� GETLOCAL func(st, 1)
� ADD func(st, ...)
� SETLOCAL func(st, 0);

29 / 37



Introduction TraceMonkey Inline threading Conclusion

Call threading
Great success?

� So, we have eliminated
� Looking up next opcode
� Bounds check for the switch
� Table lookup for the switch
� Indirect jump to correct case
� Jump back to the top of the loop
� Incrementing program counter

� And all of the opcode dispatches are direct calls, so the
branch predictor can go to town

� So this should be a major win, right?

30 / 37



Introduction TraceMonkey Inline threading Conclusion

Call threading
The problem

� Not so much. 20% performance loss

� We’ve introduced a bunch of new overhead as well
� Loading arguments into registers
� Calling the function
� Function prologue

� And worst of all, the C compiler doesn’t have as much
room to optimize

31 / 37



Introduction TraceMonkey Inline threading Conclusion

Inline threading
Eliminating the new overhead

� Is there a way to eliminate this overhead?

32 / 37



Introduction TraceMonkey Inline threading Conclusion

Inline threading
Inlining

� A lot of opcodes are small and simple

� Instead of generating code that calls functions to perform
them...

� Just generate code that does them

� This eliminates all the overhead

33 / 37



Introduction TraceMonkey Inline threading Conclusion

Inline threading
Inlining

� While “most” opcodes are big, the frequently executed
ones tend to be small

� And small opcodes benefit the most from eliminating
overhead

� 70% of the opcodes executed in SunSpider are easily
inlinable

34 / 37



Introduction TraceMonkey Inline threading Conclusion

Inline threading
An example

� Returning to our previous example:
� GETLOCAL 0
� GETLOCAL 1
� ADD
� SETLOCAL 0

� We generate code that does:
� // push local 0 onto the stack
� // push local 1 onto the stack
� ADD func(st, ...)
� // set local 0 to the top stack value

35 / 37



Introduction TraceMonkey Inline threading Conclusion

Inline threading
Perf Numbers

� Now we start to win.

� 6% speedup on SunSpider on OS X, 12% on Windows

� 3x speedup on some microbenchmarks

36 / 37



Introduction TraceMonkey Inline threading Conclusion

Conclusion

� Still not finalized

� Needs to integrate with tracing

� Lacks support for some language constructs (that require
more nanojit features)

� Bug 506182

37 / 37


	Introduction
	JavaScript
	The Need for Speed

	TraceMonkey
	Overview
	Details
	Limitations

	Inline threading
	What to do
	Interpreter overview
	Call threading
	Inline threading

	Conclusion

