INTRODUCTION TRACEMONKEY INLINE THREADING CONCLUSION

000 [e] [e]
[e]e]e} 0000 000000
0000 000000
00000

Inline-threading for Tracemonkey

Michael Sullivan

August 13, 2009

0000 000000
00000

Outline

Introduction
TraceMonkey

Inline threading

2/37

INTRODUCTION TRACEMONKEY INLINE THREADING CONCLUSION

000 o] o]
000 0000 000000
0000 000000
00000
Introduction
JavaScript

e Developed at Netscape in the mid-90s

¢ Originally intended for dynamic web content

INTRODUCTION TRACEMONKEY INLINE THREADING CONCLUSION
(o] 1) o o
000 0000 000000
0000 000000
00000

Introduction
JavaScript

C-like syntax (curly braces)
Object-Oriented (prototype-based)
First-class functions

Dynamically typed

INTRODUCTION TRACEMONKEY INLINE THREADING
ooe o o
000 0000 000000
0000 000000
00000
Introduction
JavaScript

¢ Douglas Crockford calls it the “World's Most Popular
Programming Language.”

e “Web 2.0” and AJAX rely on JavaScript

e A lot of the browser is written in JavaScript

CONCLUSION

INTRODUCTION TRACEMONKEY
000 o
€00 0000

0000

INLINE THREADING

[e]
000000
000000
00000

The Need for Speed
Making JavaScript faster...

e Makes the browser faster
e Makes running tests faster
e Makes the web faster

CONCLUSION

INTRODUCTION TRACEMONKEY INLINE THREADING CONCLUSION

000
oeo

[e] [e]

0000 000000

0000 000000
00000

The Need for Speed
New kinds of webapps

¢ Facial recognition
e Video manipulation

e Chrome demos

INTRODUCTION TRACEMONKEY INLINE THREADING CONCLUSION

000 [e] [e]
ooe 0000 000000
0000 000000
00000

The Need for Speed
Other browsers competing on JS speed

e Apple's SquirrelFish Extreme (er... "Nitro")
e Google's V8

0000 000000
00000

TraceMonkey

Overview
Details
Limitations

9/37

INTRODUCTION TRACEMONKEY INLINE THREADING CONCLUSION

000 [] (e}
000 0000 000000
0000 000000
00000
Overview

e Mozilla's recent JS engine upgrade

o Trace-based Just-in-Time Type Specialization

INTRODUCTION TRACEMONKEY INLINE THREADING CONCLUSION

000 (e} (e}
000 @000 000000
0000 000000
00000
Details

Why making JS fast is hard

e The biggest impediment to JS speed is dynamic typing
e The type of something isn't known for sure until runtime

awp

Lxov

R]3

Save result

Firefox 3 Firefox 3.5
SpiderMonkey Java f:";" m TraceMonkey
Lavaseript interpreter iavaseript Interpraters T

11/37

INTRODUCTION TRACEMONKEY INLINE THREADING CONCLUSION

000 (e} (e}
000 0e00 000000
0000 000000
00000
Details

Figuring out the types

e If you can't figure out the types until runtime...

INTRODUCTION TRACEMONKEY INLINE THREADING CONCLUSION

000 (e} (e}
000 0e00 000000
0000 000000
00000
Details

Figuring out the types

e If you can't figure out the types until runtime...

e Then observe them at runtime

INTRODUCTION TRACEMONKEY INLINE THREADING CONCLUSION

000 [e] [e]
[e]e]e} [ele]]o) 000000
0000 000000

00000

Details
How it works

e Each time through a loop, the code takes one path

o TraceMonkey monitors the types of variables through one
path and generates native code for it

e Only worth doing for “hot” loops

INTRODUCTION TRACEMONKEY INLINE THREADING
000 [e] [e]
[e]e]e} [elele] } 000000
0000 000000
00000

Details
Some perf numbers

Assorted benchmarks

Ry
4 Bow fester M Tracemankey
4,762ms
S —
185ms
27 5x faster
Fm
image
e

oA0

— T48ams
e ‘J|95r'|=
5.26x faster

Oms 2,000ms 4,000ms 6,000ms 8,000ms

CONCLUSION

INTRODUCTION TRACEMONKEY INLINE THREADING CONCLUSION

000 (e} (e}
000 0000 000000
@000 000000
00000
Limitations

Trace recording is expensive

e Recording a trace isn't free

e Recording a trace takes about 400x as long as it would to
Interpret It

o A loop needs to be executed a lot to take advantage of it

INTRODUCTION TRACEMONKEY INLINE THREADING

000 (e} (e}
000 0000 000000
0e00 000000
00000
Limitations

Not everything s traced

e The tracer still doesn't support some constructs

e Generators
e Recursion

CONCLUSION

INTRODUCTION TRACEMONKEY INLINE THREADING CONCLUSION

000 (e} (e}
000 0000 000000
[e]e] Jo} 000000
00000
Limitations

Bad trace performance

3d-cube

string-tagcloud

et S

b
I:.

r————— e — .

INTRODUCTION TRACEMONKEY INLINE THREADING CONCLUSION

000
[e]e]e}

(e} (e}
0000 000000
[e]e]e]) 000000
00000
Limitations

Ezxponential trace explosion

¢ n independent, frequently taken branches means 2" traces

INTRODUCTION
000 [e]

[e]e]e} 0000
oooe

TRACEMONKEY

INLINE THREADING CONCLUSION
o

000000

000000

00000

Limitations

Ezxponential trace explosion

¢ n independent, frequently taken branches means 2" traces
e This runs twice as slowly with tracing on:

var vl, v2,
1 =v2-=
for (var i

v3, v4, v5, v6, v7, v8, v9, v10;

v3 = v4 =
0; 1 < 1<<22; i++) {

v = v6 = v7 =v8 = Vv9 = v10 = 0;

if ((1 & (1 << 1)) !'=0)
v1++;

if ((1 & (1 << 2)) !'=0)
V2++;

if ((1 & (1 << 3)) '=0)
V3++;

/* ... */

INTRODUCTION TRACEMONKEY INLINE THREADING CONCLUSION
000

[e] o
[e]e]e} 0000 000000
0000 000000
00000

Inline threading
What to do

e Tracing is great, but but we'd like to be fast even when it
doesn't work

e So we need to speed up what we are doing when we
aren’t tracing: the interpreter

INTRODUCTION TRACEMONKEY INLINE THREADING CONCLUSION
000 o o
000 0000 ©00000
0000 000000
00000

Interpreter overview
The structure of the interpreter

e The bytecode compiler takes JavaScript source and
generates bytecode (a sort of high level assembly)

e The interpreter (or virtual machine) then executes the
bytecodes

e This should sound familiar: it is made explicit in Java

INTRODUCTION TRACEMONKEY INLINE THREADING CONCLUSION
000

[e] [e]
[e]e]e} 0000 O@0000
0000 000000
00000

Interpreter overview
Stack based VM

e The SpiderMonkey VM is stack-based

e Most operations operate on the top elements of a stack
of values

e Similar to a reverse polish notation calculator

INTRODUCTION TRACEMONKEY INLINE THREADING CONCLUSION
000 o o
000 0000 00®000
0000 000000
00000

Interpreter overview
Buytecodes

e Opcodes exist to do all of the little tasks required to
execute JavaScript, like
e Add the top two numbers on the stack
e Push the contents of a local variable onto the stack
e Push the contents of an object property onto the stack
e Call another function
e Jump to another code address

INTRODUCTION TRACEMONKEY INLINE THREADING CONCLUSION
000 o o
000 0000 000800
0000 000000
00000

Interpreter overview
Not all bytecodes are created equal

e Some bytecodes are small and simple (pushing a local
variable to the stack)

e Some are big and complicated (pushing a property on the
stack, calling a function)
e And some fall in the middle (adding two numbers)

e |t's easy if they are both integers, but they could also be
doubles, strings, chunks of XML...

INTRODUCTION

000 [e]

[e]e]e} 0000
0000

TRACEMONKEY INLINE THREADING CONCLUSION

[e]
0000e0
000000
00000

Interpreter overview
The interpreter loop

for(;;) {
JSO0p opcode = code[pc];
switch (opcode) {

case ADD:
/* Add... */
pc += ADD LENGTH;
break;

case EQ:

/* Compare things for equality... */
pc += EQ_LENGTH;

break;

case GOTO:
pc = get target(code, pc);
break;

/* .0 X%/

INTRODUCTION TRACEMONKEY INLINE THREADING CONCLUSION

000 [e] [e]
[e]e]e} 0000 O0000e
0000 000000
00000

Interpreter overview
Interpreter overhead

e There is a lot of fixed overhead

e Looking up next opcode
Bounds check for the switch
Table lookup for the switch
Indirect jump to correct case
Jump back to the top of the loop
e Incrementing program counter

¢ And since the switch does an indirect jump, the processor
has trouble predicting it

INTRODUCTION

TRACEMONKEY INLINE THREADING CONCLUSION
000 o o
000 0000 000000
0000 ©00000
00000
Call threading
An insight

o Most of the overhead comes from figuring out what
opcode to execute next

INTRODUCTION TRACEMONKEY INLINE THREADING
000 o o
000 0000 000000
0000 ©00000
00000

Call threading
An insight

o Most of the overhead comes from figuring out what
opcode to execute next

e But with the exception of control flow operations, we
know what opcodes are executed in what order

CONCLUSION

INTRODUCTION TRACEMONKEY INLINE THREADING CONCLUSION
000 o o
000 0000 000000
0000 ©00000
00000

Call threading
An insight

o Most of the overhead comes from figuring out what
opcode to execute next

e But with the exception of control flow operations, we
know what opcodes are executed in what order

e Is there a way we can express this?

INTRODUCTION

000 [e]

[e]e]e} 0000
0000

TRACEMONKEY INLINE THREADING CONCLUSION

[e]
000000
O@0000
00000

Call threading
The reveal

o We can generate native code to invoke the operations we
want

e Express the operations as functions instead of cases in a
switch

INTRODUCTION

TRACEMONKEY INLINE THREADING CONCLUSION
000 o o
000 0000 000000
0000 00®000
00000

Call threading
Opcode functions

void ADD func(state *st, int argument) {
/* Add... */

void EQ FUNC(state *st, int argument) {
/* Compare things for equality... */
}

28 /37

INTRODUCTION TRACEMONKEY INLINE THREADING CONCLUSION
000 o o
000 0000 000000
0000 000800
00000

Call threading
An example

e So if we have the following code (a = a + b):

e GETLOCAL 0
e GETLOCAL 1
e ADD

e SETLOCAL 0

o \We generate code that does:

e GETLOCAL func(st, 0)
e GETLOCAL func(st, 1)
e ADD func(st, ...)

e SETLOCAL func(st, 0);

INTRODUCTION TRACEMONKEY INLINE THREADING CONCLUSION

000 [e] [e]
[e]e]e} 0000 000000
0000 0000e0
00000

Call threading
Great success?

e So, we have eliminated

Looking up next opcode

Bounds check for the switch
Table lookup for the switch
Indirect jump to correct case
Jump back to the top of the loop
e Incrementing program counter

e And all of the opcode dispatches are direct calls, so the
branch predictor can go to town

e So this should be a major win, right?

INTRODUCTION TRACEMONKEY INLINE THREADING CONCLUSION
000 o o
000 0000 000000
0000 00000e
00000

Call threading
The problem

e Not so much. 20% performance loss
e We've introduced a bunch of new overhead as well

e Loading arguments into registers
e Calling the function
e Function prologue

e And worst of all, the C compiler doesn't have as much
room to optimize

INTRODUCTION

TRACEMONKEY INLINE THREADING CONCLUSION
000 o o
000 0000 000000
0000 000000
©0000

Inline threading
Eliminating the new overhead

e Is there a way to eliminate this overhead?

INTRODUCTION TRACEMONKEY INLINE THREADING CONCLUSION
000 o o
000 0000 000000
0000 000000
0@000

Inline threading
Inlining

A lot of opcodes are small and simple

Instead of generating code that calls functions to perform
them...

Just generate code that does them

This eliminates all the overhead

INTRODUCTION TRACEMONKEY INLINE THREADING CONCLUSION
000 o o
000 0000 000000
0000 000000
00®00

Inline threading
Inlining

e While “most” opcodes are big, the frequently executed
ones tend to be small

o And small opcodes benefit the most from eliminating
overhead

e 70% of the opcodes executed in SunSpider are easily
inlinable

INTRODUCTION TRACEMONKEY
000 o
000 0000

0000

INLINE THREADING CONCLUSION

[e]
000000
000000
[e]e]e] lo}

Inline threading
An example

e Returning to our previous example:
e GETLOCALDO
e GETLOCAL 1
e ADD
e SETLOCAL O

o \We generate code that does:

e // push local 0 onto the stack
e // push local 1 onto the stack
e ADD func(st, ...)

e // set local 0 to the top stack value

INTRODUCTION

TRACEMONKEY INLINE THREADING CONCLUSION
000 o o
000 0000 000000
0000 000000
0000e

Inline threading
Perf Numbers

e Now we start to win.

e 6% speedup on SunSpider on OS X, 12% on Windows
e 3x speedup on some microbenchmarks

INTRODUCTION TRACEMONKEY INLINE THREADING CONCLUSION

Conclusion
e Still not finalized
e Needs to integrate with tracing
e Lacks support for some language constructs (that require
more nanojit features)
e Bug 506182

	Introduction
	JavaScript
	The Need for Speed

	TraceMonkey
	Overview
	Details
	Limitations

	Inline threading
	What to do
	Interpreter overview
	Call threading
	Inline threading

	Conclusion

