
A Calculus for Relaxed Memory

Karl Crary and Michael J. Sullivan

Carnegie Mellon University
POPL ’15, Mumbai

January 17, 2015

Introduction RMC Pushes Misc Conclusion

1 / 25



Relaxed Memory Calculus

• A new approach to language memory models for concurrency
• That is, specifying what writes are available to reads
• In the presence of optimizing compilers and SMP machines

• Based around specifying visibility and execution orderings

• Suitable for use with C/C++

• With a mechanized metatheory

Introduction RMC Pushes Misc Conclusion

2 / 25



Concurrency?

• Concurrent programming is hard, even under the best of
circumstances

• Sequential consistency: threads interleave instructions,
modifying a single shared memory

• Languages designed so that if locks are used to rule out
data races, events are sequentially consistent

• But sometimes that isn’t good enough (perf-critical code,
implementation of system libraries, ...)

Introduction RMC Pushes Misc Conclusion

3 / 25



Concurrency?

• Concurrent programming is hard, even under the best of
circumstances

• Sequential consistency: threads interleave instructions,
modifying a single shared memory

• Languages designed so that if locks are used to rule out
data races, events are sequentially consistent

• But sometimes that isn’t good enough (perf-critical code,
implementation of system libraries, ...)

Introduction RMC Pushes Misc Conclusion

3 / 25



Concurrency?

• Concurrent programming is hard, even under the best of
circumstances

• Sequential consistency: threads interleave instructions,
modifying a single shared memory

• Languages designed so that if locks are used to rule out
data races, events are sequentially consistent

• But sometimes that isn’t good enough (perf-critical code,
implementation of system libraries, ...)

Introduction RMC Pushes Misc Conclusion

3 / 25



Concurrency?
Message passing

int data , flag;

void send(int msg) {

data = msg;

flag = 1;

}

int recv() {

while (!flag)

continue;

return data;

}

• Two threads: one wants to send a single message to the other

• Correctness: recv() only returns the value passed to send()

• If the read from flag returns 1, the read from data must
return the sent value

• Nope!

Introduction RMC Pushes Misc Conclusion

4 / 25



Concurrency?
Message passing

int data , flag;

void send(int msg) {

data = msg;

flag = 1;

}

int recv() {

while (!flag)

continue;

return data;

}

• Two threads: one wants to send a single message to the other

• Correctness: recv() only returns the value passed to send()

• If the read from flag returns 1, the read from data must
return the sent value

• Nope!

Introduction RMC Pushes Misc Conclusion

4 / 25



Concurrency?
Message passing

int data , flag;

void send(int msg) {

data = msg;

flag = 1;

}

int recv() {

while (!flag)

continue;

return data;

}

• Two threads: one wants to send a single message to the other

• Correctness: recv() only returns the value passed to send()

• If the read from flag returns 1, the read from data must
return the sent value

• Nope!

Introduction RMC Pushes Misc Conclusion

4 / 25



Concurrency?
Message passing: What goes wrong

int data , flag;

void send(int msg) {

data = msg;

flag = 1;

}

int recv() {

while (!flag)

continue;

return data;

}

• Compiler could reorder writes in send, hoist the load out
of the loop, ...

• CPU has out of order and speculative execution,
multilevel caches, ...

Introduction RMC Pushes Misc Conclusion

5 / 25



RMC
Constraints

int data , flag;

void send(int msg) {

data = msg;

flag = 1;

}

int recv() {

while (!flag)

continue;

return data;

}

• What do we need for this code to work?

• If the write to flag is visible to other threads, the write to
data must be also (vo = visibility order)

• The read from flag must execute before the read from
data (xo = execution order)

• The combination ensures that the write to data is visible
to the read

Introduction RMC Pushes Misc Conclusion

6 / 25



RMC
Constraints

int data , flag;

void send(int msg) {

data = msg;

flag = 1;

}

int recv() {

while (!flag)

continue;

return data;

}

• What do we need for this code to work?
• If the write to flag is visible to other threads, the write to

data must be also (vo = visibility order)

• The read from flag must execute before the read from
data (xo = execution order)

• The combination ensures that the write to data is visible
to the read

vo

Introduction RMC Pushes Misc Conclusion

6 / 25



RMC
Constraints

int data , flag;

void send(int msg) {

data = msg;

flag = 1;

}

int recv() {

while (!flag)

continue;

return data;

}

• What do we need for this code to work?
• If the write to flag is visible to other threads, the write to

data must be also (vo = visibility order)
• The read from flag must execute before the read from

data (xo = execution order)

• The combination ensures that the write to data is visible
to the read

vo

xo

Introduction RMC Pushes Misc Conclusion

6 / 25



RMC
Constraints

int data , flag;

void send(int msg) {

data = msg;

flag = 1;

}

int recv() {

while (!flag)

continue;

return data;

}

• What do we need for this code to work?
• If the write to flag is visible to other threads, the write to

data must be also (vo = visibility order)
• The read from flag must execute before the read from

data (xo = execution order)
• The combination ensures that the write to data is visible
to the read

vo

xo

Introduction RMC Pushes Misc Conclusion

6 / 25



RMC
Constraints

W[data]=msg R[flag]=1

W[flag]=1 R[data]=?

vo xorf

• The combination ensures that the write to data is visible
to the read

• The read must read from it (or a later write)

• (rf = reads from)

Introduction RMC Pushes Misc Conclusion

7 / 25



RMC
Constraints

W[data]=msg R[flag]=1

W[flag]=1 R[data]=msg

vo xorf

rf

• The combination ensures that the write to data is visible
to the read

• The read must read from it (or a later write)

• (rf = reads from)

Introduction RMC Pushes Misc Conclusion

7 / 25



RMC
Key concepts

• Have the programmer explicitly specify these constraints

• Allow specification of visibility and execution ordering

Introduction RMC Pushes Misc Conclusion

8 / 25



RMC
Concrete syntax

int data , flag;

void send(int msg) {

VEDGE(wdata , wflag );

L(wdata , data = msg);

L(wflag , flag = 1);

}

int recv() {

XEDGE(rflag , rdata );

while (!L(rflag , flag))

continue;

return L(rdata , data);

}

• L(label, expr) labels an expression

• VEDGE and XEDGE establish visibility and execution edges

Introduction RMC Pushes Misc Conclusion

9 / 25



C++11
Overview

• The C++11 memory model marks accesses to atomic
memory locations with various “memory orders”

• Relations like “synchronizes with” and “happens before”
are inferred from these

• “Happens before” isn’t transitive

Introduction RMC Pushes Misc Conclusion

10 / 25



C++11
Comparison

• Nicer to specify the key relations directly

• And it gives the compiler more flexibility

Introduction RMC Pushes Misc Conclusion

11 / 25



Ring buffer

typedef struct {

unsigned char buf[BUF_SIZE ];

unsigned front , back;

} ring_buf_t;

#define ring_inc(v) (((v) + 1) % BUF_SIZE)

• Example adapted from the Linux Kernel

• Lock-free fixed size FIFO buffer

• One producer, one consumer

• Producer modifies back, consumer modifies front.

• Empty when back == front, full when
ring_inc(back) == front.

Introduction RMC Pushes Misc Conclusion

12 / 25



void buf_enqueue(ring_buf_t *buf , unsigned char c) {

unsigned back = buf ->back;

if (ring_inc(back) != buf ->front) { // not full

buf ->buf[back] = c;

buf ->back = ring_inc(back);

}

}

int buf_dequeue(ring_buf_t *buf) {

int c = -1;

unsigned front = buf ->front;

if (front != buf ->back) { // not empty

c = buf ->buf[front];

buf ->front = ring_inc(front);

}

return c;

}

• Message passing: values enqueued will be visible to dequeuer

• Ensure the value is read before its space is marked as free

• Don’t write a value until we know its space is free

Introduction RMC Pushes Misc Conclusion

13 / 25



void buf_enqueue(ring_buf_t *buf , unsigned char c) {

unsigned back = buf ->back;

if (ring_inc(back) != buf ->front) { // not full

buf ->buf[back] = c;

buf ->back = ring_inc(back);

}

}

int buf_dequeue(ring_buf_t *buf) {

int c = -1;

unsigned front = buf ->front;

if (front != buf ->back) { // not empty

c = buf ->buf[front];

buf ->front = ring_inc(front);

}

return c;

}

• Message passing: values enqueued will be visible to dequeuer

• Ensure the value is read before its space is marked as free

• Don’t write a value until we know its space is free

Introduction RMC Pushes Misc Conclusion

13 / 25



void buf_enqueue(ring_buf_t *buf , unsigned char c) {

unsigned back = buf ->back;

if (ring_inc(back) != buf ->front) { // not full

buf ->buf[back] = c;

buf ->back = ring_inc(back);

}

}

int buf_dequeue(ring_buf_t *buf) {

int c = -1;

unsigned front = buf ->front;

if (front != buf ->back) { // not empty

c = buf ->buf[front];

buf ->front = ring_inc(front);

}

return c;

}

• Message passing: values enqueued will be visible to dequeuer

• Ensure the value is read before its space is marked as free

• Don’t write a value until we know its space is free

Introduction RMC Pushes Misc Conclusion

13 / 25



void buf_enqueue(ring_buf_t *buf , unsigned char c) {

unsigned back = buf ->back;

if (ring_inc(back) != buf ->front) { // not full

buf ->buf[back] = c;

buf ->back = ring_inc(back);

}

}

int buf_dequeue(ring_buf_t *buf) {

int c = -1;

unsigned front = buf ->front;

if (front != buf ->back) { // not empty

c = buf ->buf[front];

buf ->front = ring_inc(front);

}

return c;

}

• Message passing: values enqueued will be visible to dequeuer

• Ensure the value is read before its space is marked as free

• Don’t write a value until we know its space is free

Introduction RMC Pushes Misc Conclusion

13 / 25



void buf_enqueue(ring_buf_t *buf , unsigned char c) {

unsigned back = buf ->back;

if (ring_inc(back) != buf ->front) { // not full

buf ->buf[back] = c;

buf ->back = ring_inc(back);

}

}

int buf_dequeue(ring_buf_t *buf) {

int c = -1;

unsigned front = buf ->front;

if (front != buf ->back) { // not empty

c = buf ->buf[front];

buf ->front = ring_inc(front);

}

return c;

}

• Message passing: values enqueued will be visible to dequeuer

• Ensure the value is read before its space is marked as free

• Don’t write a value until we know its space is free

Introduction RMC Pushes Misc Conclusion

13 / 25



void buf_enqueue(ring_buf_t *buf , unsigned char c) {

XEDGE(echeck , insert );

VEDGE(insert , eupdate );

unsigned back = buf ->back;

if (ring_inc(back) != L(echeck , buf ->front)) {

L(insert , buf ->buf[back] = c);

L(eupdate , buf ->back = ring_inc(back ));

}

}

int buf_dequeue(ring_buf_t *buf) {

XEDGE(dcheck , read);

XEDGE(read , dupdate );

int c = -1;

unsigned front = buf ->front;

if (front != L(dcheck , buf ->back)) {

c = L(read , buf ->buf[front ]);

L(dupdate , buf ->front = ring_inc(front ));

}

return c;

}

Introduction RMC Pushes Misc Conclusion

14 / 25



Pushes
Rationale

• Consider the following (broken!) code, which could be a
snippet from a mutual exclusion algorithm

lock1 = 1;

if (! lock2) {

// Critical section

}

lock2 = 1;

if (! lock1) {

// Critical section

}

• Could let both threads into critical section

• Can’t fix this with visibility or execution edges

Introduction RMC Pushes Misc Conclusion

15 / 25



Pushes
Rationale

• Consider the following (broken!) code, which could be a
snippet from a mutual exclusion algorithm

lock1 = 1;

if (! lock2) {

// Critical section

}

lock2 = 1;

if (! lock1) {

// Critical section

}

• Could let both threads into critical section

• Can’t fix this with visibility or execution edges

Introduction RMC Pushes Misc Conclusion

15 / 25



Pushes

• Pushes are globally visible actions

• Totally ordered

• Doesn’t do much on its own; combined with execution
and visibility edges to constrain behavior

Introduction RMC Pushes Misc Conclusion

16 / 25



Pushes
Using pushes

W[lock1] = 1 W[lock2]=1

push push

R[lock2]=? R[lock1]=?

vo

xo

vo

xo

• Push is visibility after the write, execution before the read

• One of the pushes needs to be visible to the other

• Which makes the write visible to the other thread’s read

Introduction RMC Pushes Misc Conclusion

17 / 25



Pushes
Using pushes

W[lock1] = 1 W[lock2]=1

push push

R[lock2]=? R[lock1]=?

vo

xo

vo

xo

vo

• Push is visibility after the write, execution before the read

• One of the pushes needs to be visible to the other

• Which makes the write visible to the other thread’s read

Introduction RMC Pushes Misc Conclusion

17 / 25



Pushes
Using pushes

W[lock1] = 1 W[lock2]=1

push push

R[lock2]=? R[lock1]=1

vo

xo

vo

xo

vo

rf

• Push is visibility after the write, execution before the read

• One of the pushes needs to be visible to the other

• Which makes the write visible to the other thread’s read

Introduction RMC Pushes Misc Conclusion

17 / 25



Pushes
Using pushes

W[lock1] = 1 W[lock2]=1

push push

R[lock2]=? R[lock1]=?

vo

xo

vo

xo

vo

• Push is visibility after the write, execution before the read

• One of the pushes needs to be visible to the other

• Which makes the write visible to the other thread’s read

Introduction RMC Pushes Misc Conclusion

17 / 25



Pushes
Using pushes

W[lock1] = 1 W[lock2]=1

push push

R[lock2]=1 R[lock1]=?

vo

xo

vo

xo

vo

rf

• Push is visibility after the write, execution before the read

• One of the pushes needs to be visible to the other

• Which makes the write visible to the other thread’s read

Introduction RMC Pushes Misc Conclusion

17 / 25



Pushes
Push syntax

VEDGE(write1 , push1 );

XEDGE(push1 , read1 );

L(write1 , lock1 = 1);

L(push1 , PUSH);

if (!L(read1 , lock2)) {

// Critical section

}

VEDGE(write2 , push2 );

XEDGE(push2 , read2 );

L(write2 , lock2 = 1);

L(push2 , PUSH);

if (!L(read2 , lock1)) {

// Critical section

}

Introduction RMC Pushes Misc Conclusion

18 / 25



Theory
Overview

• Formalized typed core-calculus - see paper for details

• Very weak, to future-proof against new hardware

• Dynamic semantics explicitly accounts for out-of-order
and speculative execution

Introduction RMC Pushes Misc Conclusion

19 / 25



Theory
Coherence order

• Coherence order - order on writes to each location

• Key technical device

• Ensures single threaded computation works as expected

Introduction RMC Pushes Misc Conclusion

20 / 25



Theory
Theorems

• Progress and Preservation

• Interleaving actions with pushes gives sequential consistency

• Race free executions are sequentially consistent

• All formalized in Coq

Introduction RMC Pushes Misc Conclusion

21 / 25



Theory
Theorems

• Progress and Preservation

• Interleaving actions with pushes gives sequential consistency

• Race free executions are sequentially consistent

• All formalized in Coq

Introduction RMC Pushes Misc Conclusion

21 / 25



Implementation

• Compiler needs to preserve execution order

• On x86, visibility and execution order come for free

• On ARM, visibility order can be enforced with a fence
(dmb); execution order allows more options

Introduction RMC Pushes Misc Conclusion

22 / 25



Related Work

• Java memory model (Manson et al. 2005)

• C++ memory model (Boehm and Adve 2008, Batty et al.
2010)

• Sarkar, et al. 2011; POWER operational model
• Direct inspiration for our system

• Alglave et al. 2014; generic framework, “leapfrogging
writes”

• Jagadeesan et al. 2010; operational model for Java
• Our mechanism for speculation adapated from this

• Boehm and Demsky 2014; “out-of-thin-air” results worse
than we realized

Introduction RMC Pushes Misc Conclusion

23 / 25



Conclusion

• RMC is a new memory model built around explicitly
specifying visibility and execution orderings

• Details about the formalism and model are in the paper

• Implementation is being developed on top of Clang/LLVM

Introduction RMC Pushes Misc Conclusion

24 / 25



Thank you!

Introduction RMC Pushes Misc Conclusion

25 / 25



C++11

int load_acquire(int *ptr) {

XEDGE(load , post);

return L(load , *ptr);

}

void store_release(int *ptr , int val) {

VEDGE(pre , store );

L(store , *ptr = val);

}

Introduction RMC Pushes Misc Conclusion

25 / 25



More comparision to C++11

• We give the compiler more flexibility in how to implement
things

• C++11 ring buffers would do two releases, two acquires

• We can get a lot of the benefit of consume without the
large complexities involved

Introduction RMC Pushes Misc Conclusion

25 / 25


	Introduction
	Relaxed Memory Calculus
	Concurrency?

	RMC
	RMC
	C++11
	Ring buffer

	Pushes
	Pushes

	Misc
	Theory
	Implementation
	Related Work


